Fission yeast homolog of neuronal calcium sensor-1 (Ncs1p) regulates sporulation and confers calcium tolerance

被引:28
作者
Hamasaki-Katagiri, N
Molchanova, T
Takeda, K
Ames, JB
机构
[1] Univ Maryland, Inst Biotechnol, Ctr Adv Res Biotechnol, Rockville, MD 20850 USA
[2] NHLBI, Pathol Core, NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1074/jbc.M311895200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The neuronal calcium sensor (NCS) proteins (e.g. recoverin, neurocalcins, and frequenin) are expressed at highest levels in excitable cells, and some of them regulate desensitization of G protein-coupled receptors. Here we present NMR analysis and genetic functional studies of an NCS homolog in fission yeast (Ncs1p). Ncs1p binds three Ca2+ ions at saturation with an apparent affinity of 2 muM and Hill coefficient of 1.9. Analysis of NMR and fluorescence spectra of Ncs1p revealed significant Ca2+-induced protein conformational changes indicative of a Ca2+-myristoyl switch. The amino-terminal myristoyl group is sequestered inside a hydrophobic cavity of the Ca2+-free protein and becomes solvent-exposed in the Ca2+-bound protein. Subcellular fractionation experiments showed that myristoylation and Ca2+ binding by Ncs1p are essential for its translocation from cytoplasm to membranes. The ncs1 deletion mutant (ncs1Delta) showed two distinct phenotypes: nutrition-insensitive sexual development and a growth defect at high levels of extracellular Ca2+ (0.1 M CaCl2). Analysis of Ncs1p mutants lacking myristoylation (Ncs1p(G2A)) or deficient in Ca2+ binding (Ncs1p(E84Q/E120Q/E168Q)) revealed that Ca2+ binding was essential for both phenotypes, while myristoylation was less critical. Exogenous cAMP, a key regulator for sexual development, suppressed conjugation and sporulation of ncs1Delta, suggesting involvement of Ncs1p in the adenylate cyclase pathway turned on by the glucose-sensing G protein-coupled receptor Git3p. Starvation-independent sexual development of ncs1Delta was also complemented by retinal recoverin, which controls Ca2+-regulated desensitization of rhodopsin. In contrast, the Ca2+ intolerance of ncs1Delta was not affected by cAMP or recoverin, suggesting that the two ncs1Delta phenotypes are mechanistically independent. We propose that Schizosaccharomyces pombe Ncs1p negatively regulates sporulation perhaps by controlling Ca2+-dependent desensitization of Git3p.
引用
收藏
页码:12744 / 12754
页数:11
相关论文
共 73 条
[1]  
ALFA C, 1993, EXPT FISSION YEAST, P77
[2]   SECONDARY STRUCTURE OF MYRISTOYLATED RECOVERIN DETERMINED BY 3-DIMENSIONAL HETERONUCLEAR NMR - IMPLICATIONS FOR THE CALCIUM MYRISTOYL SWITCH [J].
AMES, JB ;
TANAKA, T ;
STRYER, L ;
IKURA, M .
BIOCHEMISTRY, 1994, 33 (35) :10743-10753
[3]   Structure and calcium-binding properties of Frq1, a novel calcium sensor in the yeast Saccharomyces cerevisiae [J].
Ames, JB ;
Hendricks, KB ;
Strahl, T ;
Huttner, IG ;
Hamasaki, N ;
Thorner, J .
BIOCHEMISTRY, 2000, 39 (40) :12149-12161
[4]   AMINO-TERMINAL MYRISTOYLATION INDUCES COOPERATIVE CALCIUM-BINDING TO RECOVERIN [J].
AMES, JB ;
PORUMB, T ;
TANAKA, T ;
IKURA, M ;
STRYER, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (09) :4526-4533
[5]   Nuclear magnetic resonance evidence for Ca2+-induced extrusion of the myristoyl group of recoverin [J].
Ames, JB ;
Tanaka, T ;
Ikura, M ;
Stryer, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (52) :30909-30913
[6]   Structure and calcium-binding studies of a recoverin mutant (E85Q) in an allosteric intermediate state [J].
Ames, JB ;
Hamasaki, N ;
Molchanova, T .
BIOCHEMISTRY, 2002, 41 (18) :5776-5787
[7]   Molecular mechanics of calcium-myristoyl switches [J].
Ames, JB ;
Ishima, R ;
Tanaka, T ;
Gordon, JI ;
Stryer, L ;
Ikura, M .
NATURE, 1997, 389 (6647) :198-202
[8]   Modulation of A-type potassium channels by a family of calcium sensors [J].
An, WF ;
Bowlby, MR ;
Betty, M ;
Cao, J ;
Ling, HP ;
Mendoza, G ;
Hinson, JW ;
Mattsson, KI ;
Strassle, BW ;
Trimmer, JS ;
Rhodes, KJ .
NATURE, 2000, 403 (6769) :553-556
[9]   Phosphoinositide-specific phospholipase C forms a complex with 14-3-3 proteins and is involved in expression of UV resistance in fission yeast [J].
Andoh, T ;
Kato, T ;
Matsui, Y ;
Toh-e, A .
MOLECULAR AND GENERAL GENETICS, 1998, 258 (1-2) :139-147
[10]   YEAST GENE REQUIRED FOR SPINDLE POLE BODY DUPLICATION - HOMOLOGY OF ITS PRODUCT WITH CA-2+-BINDING PROTEINS [J].
BAUM, P ;
FURLONG, C ;
BYERS, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (15) :5512-5516