Control of mitochondrial β-oxidation flux

被引:333
作者
Eaton, S
机构
[1] UCL, Inst Child Hlth, Surg Unit, London WC1N 1EH, England
[2] UCL, Inst Child Hlth, Biochem Endocrinol & Metab Unit, London WC1N 1EH, England
关键词
D O I
10.1016/S0163-7827(01)00024-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The control of mitochondrial beta-oxidation. including the delivery of acyl moieties from the plasma membrane to the mitochondrion, is reviewed. Control of beta-oxidation flux appears to be largely at the level of entry of acyl groups to mitochondria, but is also dependent on substrate supply. CPTI has much of the control of hepatic beta-oxidation flux, and probably exerts high control in intact muscle because of the high concentration of malonyl-CoA in vivo. beta-Oxidation flux can also be controlled by the redox state of NAD/NADH and ETF/ETFH2 Control by [acetyl-CoA]/[CoASH] may also be significant, but it is probably via export of acyl groups by carnitine acylcarnitine translocase and CPT II rather than via accumulation of 3-ketoacyl-CoA esters. The sharing of control between CPTI and other enzymes allows for flexible regulation of metabolism and the ability to rapidly adapt beta-oxidation flux to differing requirements in different tissues. (C) 10021 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:197 / 239
页数:43
相关论文
共 451 条
[71]   Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean [J].
Clapham, JC ;
Arch, JRS ;
Chapman, H ;
Haynes, A ;
Lister, C ;
Moore, GBT ;
Piercy, V ;
Carter, SA ;
Lehner, I ;
Smith, SA ;
Beeley, LJ ;
Godden, RJ ;
Herrity, N ;
Skehel, M ;
Changani, KK ;
Hockings, PD ;
Reid, DG ;
Squires, SM ;
Hatcher, J ;
Trail, B ;
Latcham, J ;
Rastan, S ;
Harper, AJ ;
Cadenas, S ;
Buckingham, JA ;
Brand, MD ;
Abuin, A .
NATURE, 2000, 406 (6794) :415-418
[72]   Clinical consequences of defects in peroxisomal β-oxidation [J].
Clayton, PT .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2001, 29 :298-305
[73]  
Clayton PT, 2001, J CLIN INVEST, V108, P457
[74]   Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice [J].
Coburn, CT ;
Knapp, FF ;
Febbraio, M ;
Beets, AL ;
Silverstein, RL ;
Abumrad, NA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (42) :32523-32529
[75]   The fatty acid transport protein (FATP1) is a very long chain acyl-CoA synthetase [J].
Coe, NR ;
Smith, AJ ;
Frohnert, BI ;
Watkins, PA ;
Bernlohr, DA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (51) :36300-36304
[76]   2-BROMOPALMITOYL-COA AND 2-BROMOPALMITATE - PROMISCUOUS INHIBITORS OF MEMBRANE-BOUND ENZYMES [J].
COLEMAN, RA ;
RAO, P ;
FOGELSONG, RJ ;
BARDES, ESG .
BIOCHIMICA ET BIOPHYSICA ACTA, 1992, 1125 (02) :203-209
[77]  
CORKEY BE, 1989, J BIOL CHEM, V264, P21608
[78]  
CORNISHBOWDEN A, 1997, CHANNELLING INTERMED, P53
[79]   Gestational, pathologic and biochemical differences between very long-chain acyl-CoA dehydrogenase deficiency and long-chain acyl-CoA dehydrogenase deficiency in the mouse [J].
Cox, KB ;
Hamm, DA ;
Millington, DS ;
Matern, D ;
Vockley, J ;
Rinaldo, P ;
Pinkert, CA ;
Rhead, WJ ;
Lindsey, JR ;
Wood, PA .
HUMAN MOLECULAR GENETICS, 2001, 10 (19) :2069-2077