Comparative Genomics of Regulation of Fatty Acid and Branched-Chain Amino Acid Utilization in Proteobacteria

被引:102
作者
Kazakov, Alexey E. [2 ]
Rodionov, Dmitry A. [1 ,2 ]
Alm, Eric [3 ,4 ,5 ]
Arkin, Adam Paul [5 ,6 ,7 ]
Dubchak, Inna [5 ,6 ]
Gelfand, Mikhail S. [2 ,8 ]
机构
[1] Burnham Inst Med Res, La Jolla, CA 92037 USA
[2] RAS, Kharkevich Inst, Inst Informat Transmiss Problems, Moscow 117901, Russia
[3] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
[4] MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA
[5] Univ Calif Berkeley, Lawrence Berkeley Lab, Virtual Inst Microbial Stress & Survival, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA
[7] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
[8] Moscow MV Lomonosov State Univ, Fac Bioengn & Bioinformat, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
GENE-EXPRESSION; PSEUDOMONAS; FADR; METABOLISM; FAMILY; LEUCINE/ISOVALERATE; CATABOLISM; NETWORKS; LEUCINE; RPOS;
D O I
10.1128/JB.01175-08
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Bacteria can use branched-chain amino acids (ILV, i.e., isoleucine, leucine, valine) and fatty acids (FAs) as sole carbon and energy sources converting ILV into acetyl-coenzyme A (CoA), propanoyl-CoA, and propionyl-CoA, respectively. In this work, we used the comparative genomic approach to identify candidate transcriptional factors and DNA motifs that control ILV and FA utilization pathways in proteobacteria. The metabolic regulons were characterized based on the identification and comparison of candidate transcription factor binding sites in groups of phylogenetically related genomes. The reconstructed ILV/FA regulatory network demonstrates considerable variability and involves six transcriptional factors from the MerR, TetR, and GntR families binding to 11 distinct DNA motifs. The ILV degradation genes in gamma- and betaproteobacteria are regulated mainly by a novel regulator from the MerR family (e. g., LiuR in Pseudomonas aeruginosa) (40 species); in addition, the TetR-type regulator LiuQ was identified in some betaproteobacteria (eight species). Besides the core set of ILV utilization genes, the LiuR regulon in some lineages is expanded to include genes from other metabolic pathways, such as the glyoxylate shunt and glutamate synthase in Shewanella species. The FA degradation genes are controlled by four regulators including FadR in gammaproteobacteria (34 species), PsrA in gamma- and betaproteobacteria (45 species), FadP in betaproteobacteria (14 species), and LiuR orthologs in alphaproteobacteria (22 species). The remarkable variability of the regulatory systems associated with the FA degradation pathway is discussed from functional and evolutionary points of view.
引用
收藏
页码:52 / 64
页数:13
相关论文
共 37 条
[21]   Transcriptome profiling of Shewanella oneidensis gene expression following exposure to acidic and alkaline pH [J].
Leaphart, AB ;
Thompson, DK ;
Huang, K ;
Alm, E ;
Wan, XF ;
Arkin, A ;
Brown, SD ;
Wu, LY ;
Yan, TF ;
Liu, XD ;
Wickham, GS ;
Zhou, JZ .
JOURNAL OF BACTERIOLOGY, 2006, 188 (04) :1633-1642
[22]   Transcriptome analysis of Shewanella oneidensis MR-1 in response to elevated salt conditions [J].
Liu, YQ ;
Gao, WM ;
Wang, Y ;
Wu, LY ;
Liu, XD ;
Yan, TF ;
Alm, E ;
Arkin, A ;
Thompson, DK ;
Fields, MW ;
Zhou, JZ .
JOURNAL OF BACTERIOLOGY, 2005, 187 (07) :2501-2507
[23]   Bacterial regulatory networks are extremely flexible in evolution [J].
Lozada-Chavez, Irma ;
Janga, Sarath Chandra ;
Collado-Vides, Julio .
NUCLEIC ACIDS RESEARCH, 2006, 34 (12) :3434-3445
[24]   In vitro transcriptional studies of the bkd operon of Pseudomonas putida:: L-branched-chain amino acids and D-leucine are the inducers [J].
Madhusudhan, KT ;
Luo, JH ;
Sokatch, JR .
JOURNAL OF BACTERIOLOGY, 1999, 181 (09) :2889-2894
[25]   COMMON ENZYMES OF BRANCHED-CHAIN AMINO-ACID CATABOLISM IN PSEUDOMONAS-PUTIDA [J].
MARTIN, RR ;
MARSHALL, VD ;
SOKATCH, JR ;
UNGER, L .
JOURNAL OF BACTERIOLOGY, 1973, 115 (01) :198-204
[26]   Organization and function of the YsiA regulon of Bacillus subtilis involved in fatty acid degradation [J].
Matsuoka, Hiroshi ;
Hirooka, Kazutake ;
Fujita, Yasutaro .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (08) :5180-5194
[27]  
Mironov A. A., 2000, Molekulyarnaya Biologiya (Moscow), V34, P253
[28]   Effect of temperature and salinity stress on growth and lipid composition of Shewanella gelidimarina [J].
Nichols, DS ;
Olley, J ;
Garda, H ;
Brenner, RR ;
McMeekin, TA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (06) :2422-2429
[29]   Polyunsaturated fatty acids in the psychrophilic bacterium Shewanella gelidimarina ACAM 456(T): molecular species analysis of major phospholipids and biosynthesis of eicosapentaenoic acid [J].
Nichols, DS ;
Nichols, PD ;
Russell, NJ ;
Davies, NW ;
McMeekin, TA .
BIOCHIMICA ET BIOPHYSICA ACTA-LIPIDS AND LIPID METABOLISM, 1997, 1347 (2-3) :164-176
[30]   The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes [J].
Overbeek, R ;
Begley, T ;
Butler, RM ;
Choudhuri, JV ;
Chuang, HY ;
Cohoon, M ;
de Crécy-Lagard, V ;
Diaz, N ;
Disz, T ;
Edwards, R ;
Fonstein, M ;
Frank, ED ;
Gerdes, S ;
Glass, EM ;
Goesmann, A ;
Hanson, A ;
Iwata-Reuyl, D ;
Jensen, R ;
Jamshidi, N ;
Krause, L ;
Kubal, M ;
Larsen, N ;
Linke, B ;
McHardy, AC ;
Meyer, F ;
Neuweger, H ;
Olsen, G ;
Olson, R ;
Osterman, A ;
Portnoy, V ;
Pusch, GD ;
Rodionov, DA ;
Rückert, C ;
Steiner, J ;
Stevens, R ;
Thiele, I ;
Vassieva, O ;
Ye, Y ;
Zagnitko, O ;
Vonstein, V .
NUCLEIC ACIDS RESEARCH, 2005, 33 (17) :5691-5702