Chaotic dynamics and the origin of statistical laws

被引:92
作者
Zaslavsky, GM [1 ]
机构
[1] NYU, New York, NY 10012 USA
关键词
D O I
10.1063/1.882777
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Chaotic dynamics in real systems does not provide finite relaxation time to equilibrium or fast decay of fluctuations, and chaotic systems are not completely random in the sense originally postulated for statistical systems. These properties may require rethinking some of the fundamental assumptions of thermodynamics.
引用
收藏
页码:39 / 45
页数:7
相关论文
共 27 条
[1]   Fractal and multifractal properties of exit times and Poincare recurrences [J].
Afraimovich, V ;
Zaslavsky, GM .
PHYSICAL REVIEW E, 1997, 55 (05) :5418-5426
[2]  
[Anonymous], 1984, CHAOS DYNAMIC SYSTEM
[3]   CHAOTIC ADVECTION IN POINT VORTEX MODELS AND 2-DIMENSIONAL TURBULENCE [J].
BABIANO, A ;
BOFFETTA, G ;
PROVENZALE, A ;
VULPIANI, A .
PHYSICS OF FLUIDS, 1994, 6 (07) :2465-2474
[4]   Self-similarity and transport in the standard map [J].
Benkadda, S ;
Kassibrakis, S ;
White, RB ;
Zaslavsky, GM .
PHYSICAL REVIEW E, 1997, 55 (05) :4909-4917
[5]  
Boltzmann L., 1872, Sitzungsberichte Akad. Wiss., V66, P275, DOI DOI 10.1007/978-3-322-84986-1_3
[6]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379
[7]  
Ehrenfest P., 1959, CONCEPTUAL FDN STAT
[8]  
Fermi E., 1955, LA1940
[9]  
Kac M., 1957, Probability and Related Topics in Physical Sciences
[10]  
KRYLOV NS, 1979, WORKS FDN STAT PHYSI