Time-optimal quantum evolution - art. no. 060503

被引:245
作者
Carlini, A [1 ]
Hosoya, A
Koike, T
Okudaira, Y
机构
[1] Tokyo Inst Technol, Dept Phys, Tokyo, Japan
[2] Keio Univ, Dept Phys, Yokohama, Kanagawa 223, Japan
关键词
14;
D O I
10.1103/PhysRevLett.96.060503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a general framework for finding the time-optimal evolution and the optimal Hamiltonian for a quantum system with a given set of initial and final states. Our formulation is based on the variational principle and is analogous to that for the brachistochrone in classical mechanics. We reduce the problem to a formal equation for the Hamiltonian which depends on certain constraint functions specifying the range of available Hamiltonians. For some simple examples of the constraints, we explicitly find the optimal solutions.
引用
收藏
页数:4
相关论文
共 14 条
[1]  
ALVAREZ JJ, QUANTPH9910115
[2]   GEOMETRY OF QUANTUM EVOLUTION [J].
ANANDAN, J ;
AHARONOV, Y .
PHYSICAL REVIEW LETTERS, 1990, 65 (14) :1697-1700
[3]  
BOSCAIN U, QUANTPH0502151
[4]   Elementary derivation for passage times [J].
Brody, DC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (20) :5587-5593
[5]   Quantum mechanics helps in searching for a needle in a haystack [J].
Grover, LK .
PHYSICAL REVIEW LETTERS, 1997, 79 (02) :325-328
[6]   Time optimal control in spin systems [J].
Khaneja, N. ;
Brockett, R. ;
Glaser, S.J. .
Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 63 (03) :323081-320811
[7]   Cartan decomposition of SU(2n) and control of spin systems [J].
Khaneja, N ;
Glaser, SJ .
CHEMICAL PHYSICS, 2001, 267 (1-3) :11-23
[8]   The maximum speed of dynamical evolution [J].
Margolus, N ;
Levitin, LB .
PHYSICA D, 1998, 120 (1-2) :188-195
[9]   Geometric strategy for the optimal quantum search [J].
Miyake, A ;
Wadati, M .
PHYSICAL REVIEW A, 2001, 64 (04) :9
[10]  
NIELSEN MA, QUANTPH0502070