Low temperature investigations and surface treatments of colloidal narrowband fluorescent nanodiamonds

被引:20
作者
Neu, E. [1 ,2 ]
Guldner, F. [1 ]
Arend, C. [1 ]
Liang, Y. [3 ]
Ghodbane, S. [4 ]
Sternschulte, H. [4 ]
Steinmueller-Nethl, D. [4 ]
Krueger, A. [3 ]
Becher, C. [1 ]
机构
[1] Univ Saarland, Fachrichtung Expt Phys 7 2, D-66123 Saarbrucken, Germany
[2] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland
[3] Univ Wurzburg, Inst Organ Chem, D-97074 Wurzburg, Germany
[4] Rho BeSt Coating Hartstoffbeschichtungs GmbH, A-6020 Innsbruck, Austria
关键词
PHONON LINES; DIAMOND; SILICON; DEFECT; LUMINESCENCE; OXIDATION; CENTERS; STATE; FILMS; AIR;
D O I
10.1063/1.4807398
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report fluorescence investigations and Raman spectroscopy on colloidal nanodiamonds (NDs) obtained via bead assisted sonic disintegration (BASD) of a polycrystalline chemical vapor deposition film. The BASD NDs contain in situ created silicon vacancy (SiV) centers. Whereas many NDs exhibit emission from SiV ensembles, we also identify NDs featuring predominant emission from a single bright SiV center. We demonstrate oxidation of the NDs in air as a tool to optimize the crystalline quality of the NDs via removing damaged regions resulting in a reduced ensemble linewidth as well as single photon emission with increased purity. We furthermore investigate the temperature dependent zero-phonon-line fine-structure of a bright single SiV center as well as the polarization properties of its emission and absorption. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:7
相关论文
共 32 条
[1]  
Bennett C. H., 2014, Theoretical computer science, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
[2]   Assembly of hybrid photonic architectures from nanophotonic constituents [J].
Benson, Oliver .
NATURE, 2011, 480 (7376) :193-199
[3]   RAMAN AND PHOTOLUMINESCENCE ANALYSIS OF STRESS STATE AND IMPURITY DISTRIBUTION IN DIAMOND THIN-FILMS [J].
BERGMAN, L ;
NEMANICH, RJ .
JOURNAL OF APPLIED PHYSICS, 1995, 78 (11) :6709-6719
[4]   Nonclassical radiation from diamond nanocrystals [J].
Beveratos, A ;
Brouri, R ;
Gacoin, T ;
Poizat, JP ;
Grangier, P .
PHYSICAL REVIEW A, 2001, 64 (06) :4
[5]   SITE SYMMETRY ANALYSIS OF THE 738 NM DEFECT IN DIAMOND [J].
BROWN, SW ;
RAND, SC .
JOURNAL OF APPLIED PHYSICS, 1995, 78 (06) :4069-4075
[6]   SILICON DEFECTS IN DIAMOND [J].
CLARK, CD ;
KANDA, H ;
KIFLAWI, I ;
SITTAS, G .
PHYSICAL REVIEW B, 1995, 51 (23) :16681-16688
[7]   THE JAHN-TELLER EFFECT AND VIBRONIC COUPLING AT DEEP LEVELS IN DIAMOND [J].
DAVIES, G .
REPORTS ON PROGRESS IN PHYSICS, 1981, 44 (07) :787-830
[8]   Size-reduction of nanodiamonds via air oxidation [J].
Gaebel, T. ;
Bradac, C. ;
Chen, J. ;
Say, J. M. ;
Brown, L. ;
Hemmer, P. ;
Rabeau, J. R. .
DIAMOND AND RELATED MATERIALS, 2012, 21 :28-32
[9]   PHOTOLUMINESCENCE VIBRATIONAL STRUCTURE OF SI CENTER IN CHEMICAL-VAPOR-DEPOSITED DIAMOND [J].
GOROKHOVSKY, AA ;
TURUKHIN, AV ;
ALFANO, RR ;
PHILLIPS, W .
APPLIED PHYSICS LETTERS, 1995, 66 (01) :43-45
[10]   A route to diamond wafers by epitaxial deposition on silicon via iridium/yttria-stabilized zirconia buffer layers [J].
Gsell, S ;
Bauer, T ;
Goldfuss, J ;
Schreck, M ;
Stritzker, B .
APPLIED PHYSICS LETTERS, 2004, 84 (22) :4541-4543