Sasakian-Einstein structures on 9#(S2 x S3)

被引:22
作者
Boyer, CP [1 ]
Galicki, K [1 ]
Nakamaye, M [1 ]
机构
[1] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
关键词
D O I
10.1090/S0002-9947-02-03015-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that 9#(S(2)xS(3)) admits an 8-dimensional complex family of inequivalent non-regular Sasakian-Einstein structures. These are the first known Einstein metrics on this 5-manifold. In particular, the bound b(2) (M) less than or equal to 8 which holds for any regular Sasakian-Einstein M does not apply to the non-regular case. We also discuss the failure of the Hitchin-Thorpe inequality in the case of 4-orbifolds and describe the orbifold version.
引用
收藏
页码:2983 / 2996
页数:14
相关论文
共 25 条
[1]  
Bando S., 1987, Adv. Stud. Pure Math., V10, P11
[2]  
Besse A.L., 1987, EINSTEIN MANIFOLDS
[4]  
Boyer C, 1999, J DIFFER GEOM, P123
[5]  
Boyer CP, 2001, J DIFFER GEOM, V57, P443
[6]   On Sasakian-Einstein geometry [J].
Boyer, CP ;
Galicki, K .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2000, 11 (07) :873-909
[7]  
BOYER CP, MATHDG0104126
[8]  
BOYER CP, MATHDG0012047
[9]   Semi-continuity of complex singularity exponents and Kahler-Einstein metrics on Fano orbifolds [J].
Demailly, JP ;
Kollár, J .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2001, 34 (04) :525-556
[10]  
DOLGACHEV I, 1982, LECT NOTES MATH, V956, P34