Selected reaction monitoring for quantitative proteomics: a tutorial

被引:1075
作者
Lange, Vinzenz [1 ,2 ]
Picotti, Paola [1 ]
Domon, Bruno [1 ]
Aebersold, Ruedi [1 ,2 ,3 ,4 ]
机构
[1] ETH, Inst Mol Syst Biol, Zurich, Switzerland
[2] Competence Ctr Syst Physiol & Metab Dis, Zurich, Switzerland
[3] Inst Syst Biol, Seattle, WA USA
[4] Univ Zurich, Fac Sci, Zurich, Switzerland
基金
美国国家卫生研究院; 瑞士国家科学基金会;
关键词
mass spectrometry; MRM; proteomics; quantitative; SRM;
D O I
10.1038/msb.2008.61
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Systems biology relies on data sets in which the same group of proteins is consistently identified and precisely quantified across multiple samples, a requirement that is only partially achieved by current proteomics approaches. Selected reaction monitoring (SRM)-also called multiple reaction monitoring-is emerging as a technology that ideally complements the discovery capabilities of shotgun strategies by its unique potential for reliable quantification of analytes of low abundance in complex mixtures. In an SRM experiment, a predefined precursor ion and one of its fragments are selected by the two mass filters of a triple quadrupole instrument and monitored over time for precise quantification. A series of transitions (precursor/fragment ion pairs) in combination with the retention time of the targeted peptide can constitute a definitive assay. Typically, a large number of peptides are quantified during a single LC-MS experiment. This tutorial explains the application of SRM for quantitative proteomics, including the selection of proteotypic peptides and the optimization and validation of transitions. Furthermore, normalization and various factors affecting sensitivity and accuracy are discussed.
引用
收藏
页数:14
相关论文
共 52 条
[31]   Comparative evaluation of current peptide production platforms used in absolute quantification in proteomics [J].
Mirzaei, Hamid ;
McBee, Joshua K. ;
Watts, Julian ;
Aebersold, Ruedi .
MOLECULAR & CELLULAR PROTEOMICS, 2008, 7 (04) :813-823
[32]   Targeted mass spectrometric strategy for global mapping of ubiquitination on proteins [J].
Mollah, Sahana ;
Wertz, Ingrid E. ;
Phung, Qui ;
Arnott, David ;
Dixit, Vishva M. ;
Lill, Jennie R. .
RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2007, 21 (20) :3357-3364
[33]  
MURRAY KK, 2006, STANDARD DE IN PRESS
[34]   Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics [J].
Ong, SE ;
Blagoev, B ;
Kratchmarova, I ;
Kristensen, DB ;
Steen, H ;
Pandey, A ;
Mann, M .
MOLECULAR & CELLULAR PROTEOMICS, 2002, 1 (05) :376-386
[35]   Mass spectrometry-based proteomics turns quantitative [J].
Ong, SE ;
Mann, M .
NATURE CHEMICAL BIOLOGY, 2005, 1 (05) :252-262
[36]  
PICOTTI P, 2008, NAT METHODS IN PRESS
[37]   The implications of proteolytic background for shotgun proteomics [J].
Picotti, Paola ;
Aebersold, Ruedi ;
Domon, Bruno .
MOLECULAR & CELLULAR PROTEOMICS, 2007, 6 (09) :1589-1598
[38]   ANOMALOUS CLEAVAGE OF ASPARTYL-PROLINE PEPTIDE BONDS DURING AMINO ACID SEQUENCE DETERMINATIONS [J].
PISZKIEW.D ;
LANDON, M ;
SMITH, EL .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1970, 40 (05) :1173-&
[39]   Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by QconCAT genes [J].
Pratt, Julie M. ;
Simpson, Deborah M. ;
Doherty, Mary K. ;
Rivers, Jenny ;
Gaskell, Simon J. ;
Beynon, Robert J. .
NATURE PROTOCOLS, 2006, 1 (02) :1029-1043
[40]   Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents [J].
Ross, PL ;
Huang, YLN ;
Marchese, JN ;
Williamson, B ;
Parker, K ;
Hattan, S ;
Khainovski, N ;
Pillai, S ;
Dey, S ;
Daniels, S ;
Purkayastha, S ;
Juhasz, P ;
Martin, S ;
Bartlet-Jones, M ;
He, F ;
Jacobson, A ;
Pappin, DJ .
MOLECULAR & CELLULAR PROTEOMICS, 2004, 3 (12) :1154-1169