Integration of expression data in genome-scale metabolic network reconstructions

被引:184
作者
Blazier, Anna S. [1 ]
Papin, Jason A. [1 ]
机构
[1] Univ Virginia, Dept Biomed Engn, Charlottesville, VA 22908 USA
来源
FRONTIERS IN PHYSIOLOGY | 2012年 / 3卷
基金
美国国家卫生研究院;
关键词
flux balance analysis; data integration; transcriptomics; expression data; metabolic networks; TRANSCRIPTIONAL REGULATION; GENE-EXPRESSION; MESSENGER-RNA; MODELS; BIOLOGY; PROTEIN;
D O I
10.3389/fphys.2012.00299
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
With the advent of high throughput technologies, the field of systems biology has amassed an abundance of "omics" data, quantifying thousands of cellular components across a variety of scales, ranging from mRNA transcript levels to metabolite quantities. Methods are needed to not only integrate this omics data but to also use this data to heighten the predictive capabilities of computational models. Several recent studies have successfully demonstrated how flux balance analysis (FBA), a constraint-based modeling approach, can be used to integrate transcriptomic data into genome-scale metabolic network reconstructions to generate predictive computational models. In this review, we summarize such FBA-based methods for integrating expression data into genome-scale metabolic network reconstructions, highlighting their advantages as well as their limitations
引用
收藏
页数:7
相关论文
共 33 条
[1]   Integration of gene expression data into genome-scale metabolic models [J].
Åkesson, M ;
Förster, J ;
Nielsen, J .
METABOLIC ENGINEERING, 2004, 6 (04) :285-293
[2]   Context-specific metabolic networks are consistent with experiments [J].
Becker, Scott A. ;
Palsson, Bernhard O. .
PLOS COMPUTATIONAL BIOLOGY, 2008, 4 (05)
[3]   Integration of metabolome data with metabolic networks reveals reporter reactions [J].
Cakir, Tunahan ;
Patil, Kiran Raosaheb ;
Onsan, Zeynep ILsen ;
Ulgen, Kutlu Ozergin ;
Kirdar, Betul ;
Nielsen, Jens .
MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1)
[4]   Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis [J].
Chandrasekaran, Sriram ;
Price, Nathan D. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (41) :17845-17850
[5]   Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism [J].
Chang, Roger L. ;
Ghamsari, Lila ;
Manichaikul, Ani ;
Hom, Erik F. Y. ;
Balaji, Santhanam ;
Fu, Weiqi ;
Shen, Yun ;
Hao, Tong ;
Palsson, Bernhard O. ;
Salehi-Ashtiani, Kourosh ;
Papin, Jason A. .
MOLECULAR SYSTEMS BIOLOGY, 2011, 7
[6]   A metabolic network approach for the identification and prioritization of antimicrobial drug targets [J].
Chavali, Arvind K. ;
D'Auria, Kevin M. ;
Hewlett, Erik L. ;
Pearson, Richard D. ;
Papin, Jason A. .
TRENDS IN MICROBIOLOGY, 2012, 20 (03) :113-123
[7]   Interpreting Expression Data with Metabolic Flux Models: Predicting Mycobacterium tuberculosis Mycolic Acid Production [J].
Colijn, Caroline ;
Brandes, Aaron ;
Zucker, Jeremy ;
Lun, Desmond S. ;
Weiner, Brian ;
Farhat, Maha R. ;
Cheng, Tan-Yun ;
Moody, D. Branch ;
Murray, Megan ;
Galagan, James E. .
PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (08)
[8]   Integrating high-throughput and computational data elucidates bacterial networks [J].
Covert, MW ;
Knight, EM ;
Reed, JL ;
Herrgard, MJ ;
Palsson, BO .
NATURE, 2004, 429 (6987) :92-96
[9]   Transcriptional regulation in constraints-based metabolic models of Escherichia coli [J].
Covert, MW ;
Palsson, BO .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (31) :28058-28064
[10]   Global reconstruction of the human metabolic network based on genomic and bibliomic data [J].
Duarte, Natalie C. ;
Becker, Scott A. ;
Jamshidi, Neema ;
Thiele, Ines ;
Mo, Monica L. ;
Vo, Thuy D. ;
Srivas, Rohith ;
Palsson, Bernhard O. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (06) :1777-1782