Integrating high-throughput and computational data elucidates bacterial networks

被引:569
作者
Covert, MW [1 ]
Knight, EM [1 ]
Reed, JL [1 ]
Herrgard, MJ [1 ]
Palsson, BO [1 ]
机构
[1] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1038/nature02456
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The flood of high-throughput biological data has led to the expectation that computational ( or in silico) models can be used to direct biological discovery, enabling biologists to reconcile heterogeneous data types, find inconsistencies and systematically generate hypotheses(1-3). Such a process is fundamentally iterative, where each iteration involves making model predictions, obtaining experimental data, reconciling the predicted outcomes with experimental ones, and using discrepancies to update the in silico model. Here we have reconstructed, on the basis of information derived from literature and databases, the first integrated genome-scale computational model of a transcriptional regulatory and metabolic network. The model accounts for 1,010 genes in Escherichia coli, including 104 regulatory genes whose products together with other stimuli regulate the expression of 479 of the 906 genes in the reconstructed metabolic network. This model is able not only to predict the outcomes of high-throughput growth phenotyping and gene expression experiments, but also to indicate knowledge gaps and identify previously unknown components and interactions in the regulatory and metabolic networks. We find that a systems biology approach that combines genome-scale experimentation and computation can systematically generate hypotheses on the basis of disparate data sources.
引用
收藏
页码:92 / 96
页数:5
相关论文
共 30 条
[1]   Computational discovery of gene modules and regulatory networks [J].
Bar-Joseph, Z ;
Gerber, GK ;
Lee, TI ;
Rinaldi, NJ ;
Yoo, JY ;
Robert, F ;
Gordon, DB ;
Fraenkel, E ;
Jaakkola, TS ;
Young, RA ;
Gifford, DK .
NATURE BIOTECHNOLOGY, 2003, 21 (11) :1337-1342
[2]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[3]   The complete genome sequence of Escherichia coli K-12 [J].
Blattner, FR ;
Plunkett, G ;
Bloch, CA ;
Perna, NT ;
Burland, V ;
Riley, M ;
ColladoVides, J ;
Glasner, JD ;
Rode, CK ;
Mayhew, GF ;
Gregor, J ;
Davis, NW ;
Kirkpatrick, HA ;
Goeden, MA ;
Rose, DJ ;
Mau, B ;
Shao, Y .
SCIENCE, 1997, 277 (5331) :1453-+
[4]   New technologies to assess genotype-phenotype relationships [J].
Bochner, BR .
NATURE REVIEWS GENETICS, 2003, 4 (04) :309-314
[5]   Minimal reaction sets for Escherichia coli metabolism under different growth requirements and uptake environments [J].
Burgard, AP ;
Vaidyaraman, S ;
Maranas, CD .
BIOTECHNOLOGY PROGRESS, 2001, 17 (05) :791-797
[6]   Probing the performance limits of the Escherichia coli metabolic network subject to gene additions or deletions [J].
Burgard, AP ;
Maranas, CD .
BIOTECHNOLOGY AND BIOENGINEERING, 2001, 74 (05) :364-375
[7]   ANAEROBIC ACTIVATION OF ARCA TRANSCRIPTION IN ESCHERICHIA-COLI - ROLES OF FNR AND ARCA [J].
COMPAN, I ;
TOUATI, D .
MOLECULAR MICROBIOLOGY, 1994, 11 (05) :955-964
[8]   Aerobic regulation of cytochrome d oxidase (cydAB) operon expression in Escherichia coli: Roles of Fnr and ArcA in repression and activation [J].
Cotter, PA ;
Melville, SB ;
Albrecht, JA ;
Gunsalus, RP .
MOLECULAR MICROBIOLOGY, 1997, 25 (03) :605-615
[9]   Transcriptional regulation in constraints-based metabolic models of Escherichia coli [J].
Covert, MW ;
Palsson, BO .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (31) :28058-28064
[10]   Regulation of gene expression in flux balance models of metabolism [J].
Covert, MW ;
Schilling, CH ;
Palsson, B .
JOURNAL OF THEORETICAL BIOLOGY, 2001, 213 (01) :73-88