Kummer congruence for the Bernoulli numbers of higher order

被引:3
作者
Jang, L
Kim, T [1 ]
Park, D
机构
[1] Kongju Natl Univ, Inst Sci Educ, Kong Ju 314701, South Korea
[2] Konkuk Univ, Dept Math & Comp Sci, Chungju 380701, South Korea
[3] Educ Kongju Natl Univ, Dept Math, Kong Ju, South Korea
关键词
Kummer congruences; non-Archimedean integration; Volkenborn integrals; Bernoulli numbers;
D O I
10.1016/S0096-3003(03)00314-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors studied the properties of Bernoulli numbers of higher order [Appl. Math. Comput., in press; Bull. Aust. Math. 65 (2002) 59]. For q = 1, we can also find their results [Proc. Jangjeon Math. Soc. 1 (2000) 97; Arch. Math. 76 (2001) 190; Proc. Jangjeon Math. Soc. 1 (2000) 161; Adv. Stud. Contemp. Math. 2 (2000) 9; Proc. Jangjeon Math. Soc. 2 (2001) 23; J. Math. Phys. A 34 (2001) L643; Proc. Jangjeon Math. Soc. 2 (2001) 19; Proc. Jangjeon Math. Sec. 2 (2001) 9; Proc. Jangjeon Math. Soc. 3 (2001) 63]. The authors suggested the question to inquire the proof of Kummer congruence for Bernoulli numbers of higher order [Appl. Math. Comput., in press]. In this paper we give a proof of Kummer type congruence for the Bernoulli numbers of higher order, which is an answer to a part of the question in [Appl. Math. Comput., in press]. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:589 / 593
页数:5
相关论文
共 11 条
[1]   On higher order generalized Bernoulli numbers [J].
Jang, YH ;
Kim, DS .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 137 (2-3) :387-398
[2]   On a multidimensional Volkenborn integral and higher order Bernoulli numbers [J].
Kim, MS ;
Son, JW .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 65 (01) :59-71
[3]   A note on q-multiple zeta functions [J].
Kim, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (46) :L643-L646
[4]   Sums of products of q-Bernoulli numbers [J].
Kim, T .
ARCHIV DER MATHEMATIK, 2001, 76 (03) :190-195
[5]  
KIM T, 2001, P JANGJ MATH SOC, V3, P63
[6]  
KIM T, 2001, P JANGJ MATH SOC, V2, P9
[7]  
KIM T, 2001, P JANGJ MATH SOC, V2, P23
[8]  
KIM T, 2000, ADV STUD CONT MATH, V2, P9
[9]  
KIM T, 2001, P JANGJ MATH SOC, V2, P19
[10]  
KIM T, 2000, P JANGJEON MATH SOC, V1, P161