On a multidimensional Volkenborn integral and higher order Bernoulli numbers

被引:5
作者
Kim, MS [1 ]
Son, JW [1 ]
机构
[1] Kyungnam Univ, Dept Math, Masan 631701, South Korea
关键词
D O I
10.1017/S0004972700020062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, using a multidimensional Volkenborn integral, we give a p-adic expression of the higher order Bernoulli numbers. This shows immediately the relation to the sums of products of the ordinary Bernoulli numbers of Dilcher in 1996. We also consider the Mahler expansion of several p-adic variables function, and give some examples.
引用
收藏
页码:59 / 71
页数:13
相关论文
共 14 条
[1]   Congruences of p-adic integer order Bernoulli numbers [J].
Adelberg, A .
JOURNAL OF NUMBER THEORY, 1996, 59 (02) :374-388
[2]  
[Anonymous], 1984, GRADUATE TEXTS MATH
[3]  
Carlitz L., 1952, PACIFIC J MATH, V2, P127
[4]   PARA-ADIC LOG GAMMA-FUNCTION AND PARA-ADIC EULER CONSTANTS [J].
DIAMOND, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 233 (OCT) :321-337
[5]   Sums of products of Bernoulli numbers [J].
Dilcher, K .
JOURNAL OF NUMBER THEORY, 1996, 60 (01) :23-41
[6]  
HOWARD FT, 1994, FIBONACCI QUART, V32, P316
[7]  
KOBLITZ N, 1980, LONDON MATH SOC LECT, V46
[8]  
Mahler K., 1981, CAMBRIDGE TRACTS MAT, V76
[9]  
Norlund NE., 1924, Vorlesungen uber Differenzen-Rechnung
[10]  
Robert A. M., 2000, COURSE P ADIC ANAL, V198