Analysis of the requirements for pilus biogenesis at the outer membrane usher and the function of the usher C-terminus

被引:34
作者
So, SSK [1 ]
Thanassi, DG [1 ]
机构
[1] Stony Brook Univ, Ctr Infect Dis, Dept Mol Genet & Microbiol, Stony Brook, NY 11794 USA
关键词
D O I
10.1111/j.1365-2958.2006.052111.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Uropathogenic strains of Escherichia coli assemble type 1 and P pili to colonize the bladder and kidney respectively. These pili are prototype structures assembled by the chaperone/usher secretion pathway. In this pathway, a periplasmic chaperone works together with an outer membrane (OM) usher to control the folding of pilus subunits, their assembly into a pilus fibre and secretion of the fibre to the cell surface. The usher serves as the assembly and secretion platform in the OM. The usher has distinct functional domains, with the N-terminus providing the initial targeting site for chaperone-subunit complexes and the C-terminus required for subsequent stages of pilus biogenesis. In this study, we investigated the molecular interactions occurring at the usher during pilus biogenesis and the function of the usher C-terminus. We provide genetic and biochemical evidence that the usher functions as a complex in the OM and that interaction of the pilus adhesin with the usher is critical to prime the usher for pilus biogenesis. Analysis of C-terminal truncation and substitution mutants of the P pilus usher PapC demonstrated that the C-terminus is required for proper binding of chaperone-subunit complexes to the usher and plays an important role in assembly of complete pili.
引用
收藏
页码:364 / 375
页数:12
相关论文
共 50 条
[1]   BIOGENESIS OF ESCHERICHIA-COLI PAP PILI - PAPH, A MINOR PILIN SUBUNIT INVOLVED IN CELL ANCHORING AND LENGTH MODULATION [J].
BAGA, M ;
NORGREN, M ;
NORMARK, S .
CELL, 1987, 49 (02) :241-251
[2]   INVIVO DEGRADATION OF SECRETED FUSION PROTEINS BY THE ESCHERICHIA-COLI OUTER-MEMBRANE PROTEASE OMPT [J].
BANEYX, F ;
GEORGIOU, G .
JOURNAL OF BACTERIOLOGY, 1990, 172 (01) :491-494
[3]   Catalysis of protein folding by chaperones in pathogenic bacteria [J].
Bann, JG ;
Pinkner, JS ;
Frieden, C ;
Hultgren, SJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (50) :17389-17393
[4]   PapD-like chaperones provide the missing information for folding of pilin proteins [J].
Barnhart, MM ;
Pinkner, JS ;
Soto, GE ;
Sauer, FG ;
Langermann, S ;
Waksman, G ;
Frieden, C ;
Hultgren, SJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (14) :7709-7714
[5]   TYPE-1 FIMBRIAE MUTANTS OF ESCHERICHIA-COLI K12 - CHARACTERIZATION OF RECOGNIZED AFIMBRIATE STRAINS AND CONSTRUCTION OF NEW FIM DELETION MUTANTS [J].
BLOMFIELD, IC ;
MCCLAIN, MS ;
EISENSTEIN, BI .
MOLECULAR MICROBIOLOGY, 1991, 5 (06) :1439-1445
[6]  
BOCK K, 1985, J BIOL CHEM, V260, P8545
[7]   STRUCTURAL POLYMORPHISM OF BACTERIAL ADHESION PILI [J].
BULLITT, E ;
MAKOWSKI, L .
NATURE, 1995, 373 (6510) :164-167
[8]   GENE DISRUPTION IN ESCHERICHIA-COLI - TCR AND KM(R) CASSETTES WITH THE OPTION OF FLP-CATALYZED EXCISION OF THE ANTIBIOTIC-RESISTANCE DETERMINANT [J].
CHEREPANOV, PP ;
WACKERNAGEL, W .
GENE, 1995, 158 (01) :9-14
[9]   X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli [J].
Choudhury, D ;
Thompson, A ;
Stojanoff, V ;
Langermann, S ;
Pinkner, J ;
Hultgren, SJ ;
Knight, SD .
SCIENCE, 1999, 285 (5430) :1061-1066
[10]   Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract [J].
Connell, H ;
Agace, W ;
Klemm, P ;
Schembri, M ;
Marild, S ;
Svanborg, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (18) :9827-9832