Photocatalytic Activity Enhanced via g-C3N4 Nanoplates to Nanorods

被引:636
作者
Bai, Xiaojuan [1 ]
Wang, Li [1 ]
Zong, Ruilong [1 ]
Zhu, Yongfa [1 ]
机构
[1] Tsinghua Univ, Dept Chem, Beijing Key Lab Analyt Methods & Instrumentat, Beijing 100084, Peoples R China
基金
美国国家科学基金会; 国家高技术研究发展计划(863计划);
关键词
GRAPHITIC CARBON NITRIDE; VISIBLE-LIGHT-DRIVEN; HYDROGEN-PRODUCTION; WATER; PERFORMANCES; DEGRADATION; OXIDATION; CATALYST; ZNWO4; O-2;
D O I
10.1021/jp402062d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The transformation of graphitic carbon nitride (g-C3N4) from nanoplates to nanorods was realized by a simple reflux method. The photocatalytic activity and the intensity of the, photocurrent response of g-C3N4 nanorods under visible light were about 1.5 and 2.0 times those of g-C3N4 nanoplates, respectively. The formation mechanism of g-C3N4 from nanoplates to nanorods was demonstrated that g-C3N4 nanoplates undergo,a possible exfoliation and regrowth process and a rolling mechanism of lamellar structure, which is responsible for elimination of the surface defects in the reflux process. During the transformation of g-C3N4 from nanoplates to nanorods, the enhancement of photocatalytic activity and photocurrent intensity in g-C3N4 nanorods was mainly attributed to the increase of active lattice face and elimination of surface defects.
引用
收藏
页码:9952 / 9961
页数:10
相关论文
共 56 条
[1]   Pristine simple oxides as visible light driven photocatalysts: Highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide [J].
Abe, Ryu ;
Takami, Hiticishi ;
Murakami, Naoya ;
Ohtani, Bunsho .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (25) :7780-+
[2]   Graphene Nanomesh by ZnO Nanorod Photocatalysts [J].
Akhavan, Omid .
ACS NANO, 2010, 4 (07) :4174-4180
[3]   Micro-Raman investigation of optical phonons in ZnO nanocrystals [J].
Alim, KA ;
Fonoberov, VA ;
Shamsa, M ;
Balandin, AA .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (12)
[4]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[5]   Visible Photocatalytic Activity Enhancement of ZnWO4 by Graphene Hybridization [J].
Bai, Xiaojuan ;
Wang, Li ;
Zhu, Yongfa .
ACS CATALYSIS, 2012, 2 (12) :2769-2778
[6]   Fe-g-C3N4-Catalyzed Oxidation of Benzene to Phenol Using Hydrogen Peroxide and Visible Light [J].
Chen, Xiufang ;
Zhang, Jinshui ;
Fu, Xianzhi ;
Antonietti, Markus ;
Wang, Xinchen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (33) :11658-+
[7]   Electronic and structural properties of two-dimensional carbon nitride graphenes [J].
Deifallah, Malek ;
McMillan, Paul F. ;
Cora, Furio .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (14) :5447-5453
[8]   Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles [J].
Ge, Lei ;
Han, Changcun ;
Liu, Jing ;
Li, Yunfeng .
APPLIED CATALYSIS A-GENERAL, 2011, 409 :215-222
[9]   Synthesis and photocatalytic performance of novel metal-free g-C3N4 photocatalysts [J].
Ge, Lei .
MATERIALS LETTERS, 2011, 65 (17-18) :2652-2654
[10]   Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for friedel-crafts reaction of benzene [J].
Goettmann, Frederic ;
Fischer, Anna ;
Antonietti, Markus ;
Thomas, Arne .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (27) :4467-4471