Complexation of the carbonate, nitrate, and acetate anions with the uranyl dication:: Density functional studies with relativistic effective core potentials

被引:105
作者
de Jong, WA
Aprà, E
Windus, TL
Nichols, JA
Harrison, RJ
Gutowski, KE
Dixon, DA
机构
[1] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA
[2] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA
[3] Univ Alabama, Dept Chem, Tuscaloosa, AL 35487 USA
关键词
D O I
10.1021/jp0541462
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The structures and vibrational frequencies of uranyl carbonates, [UO2(CO3)(n)])((2-2n)) and [(UO2)(3)(CO3)(6)],(6-) uranyl nitrates, [UO2(NO3)(n)]((2-n)), and uranyl acetates, [UO2(CH3COO)(n)]((2-n)) (n = 1,2,3) have been calculated by using local density functional theory (LDFT). Only bidentate ligand coordination modes to the uranyl dication have been modeled. The calculated structures and frequencies are compared to available experimental data, including IR, Raman, X-ray diffraction, and EXAFS solution and crystal structure data. The energetics of ligand binding have been calculated using the B3LYP hybrid functional. In general, the structural and vibrational results at the LDFT level are in good agreement with experimental results and provide realistic pictures of solution phase and solid-state behavior. For the [UO2(CO3)(3)](6-) anion, calculations suggest that complexity in the CO32- stretching signature upon complexation is due to the formation of C=O and C-O domains, the latter of which can split by as much as 300 cm(-1). Assessment of the binding energies indicate that the [UO2(CO3)(2)](2-) anion is more stable than the [UO2(CO3)(3)](4-) anion due to the accumulation of excess charge, whereas the tri-ligand species are the most stable in the nitrate and acetate anions.
引用
收藏
页码:11568 / 11577
页数:10
相关论文
共 80 条
[21]   RELATIVISTIC AND CORRELATION-EFFECTS FOR ELEMENT 105 (HAHNIUM, HA) - A COMPARATIVE-STUDY OF M AND MO (M = NB, TA, HA) USING ENERGY-ADJUSTED ABINITIO PSEUDOPOTENTIALS [J].
DOLG, M ;
STOLL, H ;
PREUSS, H ;
PITZER, RM .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (22) :5852-5859
[22]   1ST-ROW DIATOMIC-MOLECULES AND LOCAL DENSITY MODELS [J].
DUNLAP, BI ;
CONNOLLY, JWD ;
SABIN, JR .
JOURNAL OF CHEMICAL PHYSICS, 1979, 71 (12) :4993-4999
[23]   The hydrolysis and carbonate complexation of strontium and calcium in aqueous solution. Use of molecular modeling calculations in the development of aqueous thermodynamic models [J].
Felmy, AR ;
Dixon, DA ;
Rustad, JR ;
Mason, MJ ;
Onishi, LM .
JOURNAL OF CHEMICAL THERMODYNAMICS, 1998, 30 (09) :1103-1120
[24]  
FRISCH MJ, 2004, GUASSIAN 03 REVISION
[25]   Raman spectroscopic study of the uranyl tricarbonate mineral liebigite [J].
Frost, RL ;
Erickson, KL ;
Weier, ML ;
Carmody, O ;
Cejka, J .
JOURNAL OF MOLECULAR STRUCTURE, 2005, 737 (2-3) :173-181
[26]   A PROPER ACCOUNT OF CORE-POLARIZATION WITH PSEUDOPOTENTIALS - SINGLE VALENCE-ELECTRON ALKALI COMPOUNDS [J].
FUENTEALBA, P ;
PREUSS, H ;
STOLL, H ;
VONSZENTPALY, L .
CHEMICAL PHYSICS LETTERS, 1982, 89 (05) :418-422
[27]   PSEUDOPOTENTIAL CALCULATIONS FOR ALKALINE-EARTH ATOMS [J].
FUENTEALBA, P ;
VONSZENTPALY, L ;
PREUSS, H ;
STOLL, H .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1985, 18 (07) :1287-1296
[28]  
FUENTEALBA P, 1985, J PHYS B ATOM MOL PH, V65, P1321
[29]   Theoretical study of the structure of tricarbonatodioxouranate [J].
Gagliardi, L ;
Grenthe, I ;
Roos, BO .
INORGANIC CHEMISTRY, 2001, 40 (13) :2976-2978
[30]   VIBRATIONAL SPECTROSCOPIC STUDIES OF URANYL COMPLEXES IN AQUEOUS AND NONAQUEOUS SOLUTIONS [J].
GAL, M ;
GOGGIN, PL ;
MINK, J .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 1992, 48 (01) :121-132