Stochastic solution of space-time fractional diffusion equations

被引:254
作者
Meerschaert, MM [1 ]
Benson, DA
Scheffler, HP
Baeumer, B
机构
[1] Univ Nevada, Dept Math, Reno, NV 89557 USA
[2] Univ Nevada, Desert Res Inst, Reno, NV 89506 USA
[3] Univ Dortmund, Fachbereich Math, D-44221 Dortmund, Germany
[4] Univ Otago, Dept Math & Stat, Dunedin, New Zealand
来源
PHYSICAL REVIEW E | 2002年 / 65卷 / 04期
关键词
D O I
10.1103/PhysRevE.65.041103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Classical and anomalous diffusion equations employ integer derivatives, fractional derivatives, and other pseudodifferential operators in space. In this paper we show that replacing the integer time derivative by a fractional derivative subordinates the original stochastic solution to an inverse stable subordinator process whose probability distributions are Mittag-Leffler type. This leads to explicit solutions for space-time fractional diffusion equations with multiscaling space-fractional derivatives, and additional insight into the meaning of these equations.
引用
收藏
页数:4
相关论文
共 43 条
[1]  
[Anonymous], 1983, APPL MATH SCI, DOI DOI 10.1007/978-1-4612-5561-1
[2]  
Arendt W., 2001, MONOGRAPHS MATH
[3]   Subordinated advection-dispersion equation for contaminant transport [J].
Baeumer, B ;
Benson, DA ;
Meerschaert, MM ;
Wheatcraft, SW .
WATER RESOURCES RESEARCH, 2001, 37 (06) :1543-1550
[4]  
Baeumer B., 2001, FRACT CALCU APPL ANA, V4, P481
[5]   From continuous time random walks to the fractional Fokker-Planck equation [J].
Barkai, E ;
Metzler, R ;
Klafter, J .
PHYSICAL REVIEW E, 2000, 61 (01) :132-138
[6]   Fractional Fokker-Planck equation, solution, and application [J].
Barkai, E .
PHYSICAL REVIEW E, 2001, 63 (04)
[7]  
BARKAI E, CONDMAT0108024
[8]   The fractional-order governing equation of Levy motion [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1413-1423
[9]   Application of a fractional advection-dispersion equation [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1403-1412
[10]   Fractional dispersion, Levy motion, and the MADE tracer tests [J].
Benson, DA ;
Schumer, R ;
Meerschaert, MM ;
Wheatcraft, SW .
TRANSPORT IN POROUS MEDIA, 2001, 42 (1-2) :211-240