Stochastic solution of space-time fractional diffusion equations

被引:254
作者
Meerschaert, MM [1 ]
Benson, DA
Scheffler, HP
Baeumer, B
机构
[1] Univ Nevada, Dept Math, Reno, NV 89557 USA
[2] Univ Nevada, Desert Res Inst, Reno, NV 89506 USA
[3] Univ Dortmund, Fachbereich Math, D-44221 Dortmund, Germany
[4] Univ Otago, Dept Math & Stat, Dunedin, New Zealand
来源
PHYSICAL REVIEW E | 2002年 / 65卷 / 04期
关键词
D O I
10.1103/PhysRevE.65.041103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Classical and anomalous diffusion equations employ integer derivatives, fractional derivatives, and other pseudodifferential operators in space. In this paper we show that replacing the integer time derivative by a fractional derivative subordinates the original stochastic solution to an inverse stable subordinator process whose probability distributions are Mittag-Leffler type. This leads to explicit solutions for space-time fractional diffusion equations with multiscaling space-fractional derivatives, and additional insight into the meaning of these equations.
引用
收藏
页数:4
相关论文
共 43 条
[41]  
Uchaikin VV, 1999, CHANCE STABILITY STA, DOI [10.1515/9783110935974, DOI 10.1515/9783110935974]
[42]   THE FRACTIONAL DIFFUSION EQUATION [J].
WYSS, W .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (11) :2782-2785
[43]   FRACTIONAL KINETIC-EQUATION FOR HAMILTONIAN CHAOS [J].
ZASLAVSKY, GM .
PHYSICA D-NONLINEAR PHENOMENA, 1994, 76 (1-3) :110-122