Flow structure in sinuous submarine channels: Velocity and turbulence structure of an experimental submarine channel

被引:112
作者
Keevil, Gareth M. [1 ]
Peakall, Jeff [1 ]
Best, James L. [1 ]
Amos, Kathryn J. [1 ]
机构
[1] Univ Leeds, Sch Earth & Environm, Earth & Biosphere, Leeds LS2 9JT, W Yorkshire, England
基金
英国自然环境研究理事会;
关键词
physical model; submarine channels; secondary flow; gravity current;
D O I
10.1016/j.margeo.2006.03.010
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Submarine channels have long been considered analogous to meandering fluvial channels due to their similar planform geometry, and this has given rise to strong analogies in terms of the fluid dynamics of these channel types. However, there is a paucity of direct measurements detailing the structure of velocity or sediment concentration, and nothing is known about the structure of secondary flow, within submarine channels. Within fluvial channels, secondary circulation has been shown to be an important control of erosion, deposition, lateral sediment transport and overall bend stability. This paper presents a series of experiments in which saline gravity currents flowed through a submerged, fixed-form, sinuous channel model. Ultrasonic Doppler velocity profiling provided high-resolution, three-dimensional visualisation of flow fields, thereby allowing the first quantitative visualisation of velocity profiles and secondary flows of a saline gravity current within a sinuous submarine channel. The same model was also used to measure the structure of flow within a subaerial channel, thereby providing a detailed comparison between a submarine and fluvial channel. The data reveal that secondary flow cells in submarine channels are best developed at bend apexes and that the basal component of the flow cell moves from the inside to the outside of the bend, in a reversed direction to that expected from models of fluvial bend flow. These results are of prime importance when assessing the validity of comparisons between submarine and fluvial channels, and the role of secondary flow cells in the migration and evolution of meander bends. This work demonstrates that the fundamental flow processes controlling the evolution and migration of submarine and fluvial channels may be very different, and suggest that the form and evolution of submarine channels may also show different properties to their fluvial counterparts. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:241 / 257
页数:17
相关论文
共 84 条
[41]   Velocity and turbulence structure of density currents and internal solitary waves: potential sediment transport and the formation of wave ripples in deep water [J].
Kneller, BC ;
Bennett, SJ ;
McCaffrey, WD .
SEDIMENTARY GEOLOGY, 1997, 112 (3-4) :235-250
[42]   Velocity structure, turbulence and fluid stresses in experimental gravity currents [J].
Kneller, BC ;
Bennett, SJ ;
McCaffrey, WD .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1999, 104 (C3) :5381-5391
[43]  
Kolla V, 2001, AAPG BULL, V85, P1373
[44]   CHANNELIZED FLOW OF TURBIDITY CURRENTS WITH APPLICATION TO MONTEREY DEEP-SEA FAN CHANNEL [J].
KOMAR, PD .
JOURNAL OF GEOPHYSICAL RESEARCH, 1969, 74 (18) :4544-+
[45]   Turbidites in the Upper Carboniferous Ross Formation, western Ireland: reconstruction of a channel and spillover system [J].
Lien, T ;
Walker, RG ;
Martinsen, OJ .
SEDIMENTOLOGY, 2003, 50 (01) :113-148
[46]  
Lusseyran F, 2003, EXP FLUIDS, V35, P32, DOI 10.1007/S00348-003-0614-0
[47]   Spatio-temporal evolution of velocity structure, concentration and grainsize stratification within experimental particulate gravity currents [J].
McCaffrey, WD ;
Choux, CM ;
Baas, JH ;
Haughton, PDW .
MARINE AND PETROLEUM GEOLOGY, 2003, 20 (6-8) :851-860
[48]   Submarine canyons in the bathtub [J].
Métivier, F ;
Lajeunesse, E ;
Cacas, MC .
JOURNAL OF SEDIMENTARY RESEARCH, 2005, 75 (01) :6-11
[49]   SEDIMENT DEPOSITION FROM TURBIDITY CURRENTS [J].
MIDDLETON, GV .
ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, 1993, 21 :89-114
[50]  
MIDDLETON GV, 1966, J SEDIMENT PETROL, V36, P202