Transfer of a cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograft model

被引:160
作者
Bals, R
Weiner, DJ
Meegalla, RL
Wilson, JM
机构
[1] Wistar Inst, Inst Human Gene Therapy, Dept Med & Mol & Cellular Engn, Philadelphia, PA 19104 USA
[2] Childrens Hosp Philadelphia, Div Pulm Med, Philadelphia, PA 19104 USA
关键词
D O I
10.1172/JCI6570
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Recent studies suggest that the gene defect in cystic fibrosis (CF) leads to a breach in innate immunity. We describe a novel genetic strategy for reversing the CF-specific defect of antimicrobial activity by transferring a gene encoding a secreted cathelicidin peptide antibiotic into the airway epithelium grown in a human bronchial xenograft model. The airway surface fluid (ASF) from CF xenografts failed to kill Pseudomonas aeruginosa or Staphylococcus aureus. Partial reconstitution of CF transmembrane conductance regulator expression after adenovirus-mediated gene transfer restored the antimicrobial activity of ASF from CF xenografts to normal levels. Exposure of CF xenografts to an adenovirus expressing the human cathelicidin LL-37/hCAP-18 increased levels of this peptide in the ASF three- to fourfold above the normal concentrations, which were equivalent in ASF from CF and normal xenografts before gene transfer. The increase of LL-37 was sufficient to restore bacterial killing to normal levels. The data presented describe an alternative genetic approach to the treatment of CF based on enhanced expression of an endogenous antimicrobial peptide and provide strong evidence that expression of antimicrobial peptides indeed protects against bacterial infection.
引用
收藏
页码:1113 / 1117
页数:5
相关论文
共 13 条
[1]   FALL-39, A PUTATIVE HUMAN PEPTIDE ANTIBIOTIC, IS CYSTEINE-FREE AND EXPRESSED IN BONE-MARROW AND TESTIS [J].
AGERBERTH, B ;
GUNNE, H ;
ODEBERG, J ;
KOGNER, P ;
BOMAN, HG ;
GUDMUNDSSON, GH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (01) :195-199
[2]   The innate immune system in cystic fibrosis lung disease [J].
Bals, R ;
Weiner, DJ ;
Wilson, JM .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 103 (03) :303-307
[3]   The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface [J].
Bals, R ;
Wang, XR ;
Zasloff, M ;
Wilson, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (16) :9541-9546
[4]   Human β-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung [J].
Bals, R ;
Wang, XR ;
Wu, ZR ;
Freeman, T ;
Bafna, V ;
Zasloff, M ;
Wilson, JM .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 102 (05) :874-880
[5]   Cystic fibrosis [J].
Davis, PB ;
Drumm, M ;
Konstan, MW .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 1996, 154 (05) :1229-1256
[6]   SUBMUCOSAL GLANDS ARE THE PREDOMINANT SITE OF CFTR EXPRESSION IN THE HUMAN BRONCHUS [J].
ENGELHARDT, JF ;
YANKASKAS, JR ;
ERNST, SA ;
YANG, YP ;
MARINO, CR ;
BOUCHER, RC ;
COHN, JA ;
WILSON, JM .
NATURE GENETICS, 1992, 2 (03) :240-248
[7]   ADENOVIRUS-MEDIATED TRANSFER OF THE CFTR GENE TO LUNG OF NONHUMAN-PRIMATES - BIOLOGICAL EFFICACY STUDY [J].
ENGELHARDT, JF ;
SIMON, RH ;
YANG, YP ;
ZEPEDA, M ;
WEBERPENDLETON, S ;
DORANZ, B ;
GROSSMAN, M ;
WILSON, JM .
HUMAN GENE THERAPY, 1993, 4 (06) :759-769
[8]   DIRECT GENE-TRANSFER OF HUMAN CFTR INTO HUMAN BRONCHIAL EPITHELIA OF XENOGRAFTS WITH E1-DELETED ADENOVIRUSES [J].
ENGELHARDT, JF ;
YANG, YP ;
STRATFORDPERRICAUDET, LD ;
ALLEN, ED ;
KOZARSKY, K ;
PERRICAUDET, M ;
YANKASKAS, JR ;
WILSON, JM .
NATURE GENETICS, 1993, 4 (01) :27-34
[9]   Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis [J].
Goldman, MJ ;
Anderson, GM ;
Stolzenberg, ED ;
Kari, UP ;
Zasloff, M ;
Wilson, JM .
CELL, 1997, 88 (04) :553-560
[10]   Human airway epithelia express a beta-defensin [J].
McCray, PB ;
Bentley, L .
AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 1997, 16 (03) :343-349