Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space

被引:600
作者
Hansen, Katja [1 ]
Biegler, Franziska [2 ]
Ramakrishnan, Raghunathan [3 ,4 ]
Pronobis, Wiktor [2 ]
von Lilienfeld, O. Anatole [3 ,4 ,5 ]
Mueller, Klaus-Robert [2 ,6 ]
Tkatchenko, Alexandre [1 ]
机构
[1] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany
[2] Tech Univ Berlin, Machine Learning Grp, D-10587 Berlin, Germany
[3] Univ Basel, Inst Phys Chem, CH-4056 Basel, Switzerland
[4] Univ Basel, Dept Chem, Natl Ctr Computat Design & Discovery Novel Mat, CH-4056 Basel, Switzerland
[5] Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA
[6] Korea Univ, Dept Brain & Cognit Engn, Seoul 136713, South Korea
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2015年 / 6卷 / 12期
基金
欧洲研究理事会; 瑞士国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
VIRTUAL EXPLORATION; UNIVERSE;
D O I
10.1021/acs.jpclett.5b00831
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstrate prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the "holy grail" of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. In addition, the same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies.
引用
收藏
页码:2326 / 2331
页数:6
相关论文
共 23 条
[11]   Blue Obelisk - Interoperability in chemical informatics [J].
Guha, Rajarshi ;
Howard, Michael T. ;
Hutchison, Geoffrey R. ;
Murray-Rust, Peter ;
Rzepa, Henry ;
Steinbeck, Christoph ;
Wegner, Jorg ;
Willighagen, Egon L. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2006, 46 (03) :991-998
[12]   Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies [J].
Hansen, Katja ;
Montavon, Gregoire ;
Biegler, Franziska ;
Fazli, Siamac ;
Rupp, Matthias ;
Scheffler, Matthias ;
von Lilienfeld, O. Anatole ;
Tkatchenko, Alexandre ;
Mueller, Klaus-Robert .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (08) :3404-3419
[13]  
Joachims T, 1998, EUR C MACH LEARN, P137
[14]   Chemical space [J].
Kirkpatrick, P ;
Ellis, C .
NATURE, 2004, 432 (7019) :823-823
[15]   Robust and affordable multicoefficient methods for thermochemistry and thermochemical kinetics: The MCCM/3 suite and SAC/3 [J].
Lynch, BJ ;
Truhlar, DG .
JOURNAL OF PHYSICAL CHEMISTRY A, 2003, 107 (19) :3898-3906
[16]   Using neural networks to represent potential surfaces as sums of products [J].
Manzhos, Sergei ;
Carrington, Tucker, Jr. .
JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (19)
[17]   Machine learning of molecular electronic properties in chemical compound space [J].
Montavon, Gregoire ;
Rupp, Matthias ;
Gobre, Vivekanand ;
Vazquez-Mayagoitia, Alvaro ;
Hansen, Katja ;
Tkatchenko, Alexandre ;
Mueller, Klaus-Robert ;
von Lilienfeld, O. Anatole .
NEW JOURNAL OF PHYSICS, 2013, 15
[18]   Homometric structures [J].
Patterson, AL .
NATURE, 1939, 143 :939-940
[19]   Rationale for mixing exact exchange with density functional approximations [J].
Perdew, JP ;
Ernzerhof, M ;
Burke, K .
JOURNAL OF CHEMICAL PHYSICS, 1996, 105 (22) :9982-9985
[20]  
Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865