Unsupervised selection of a finite Dirichlet mixture model: An MML-based approach

被引:96
作者
Bouguila, Nizar [1 ]
Ziou, Djemel
机构
[1] Concordia Univ, Concordia Inst Informat Syst Engn, Montreal, PQ H3G 1T7, Canada
[2] Univ Sherbrooke, Dept Informat, Sherbrooke, PQ J1K 2R1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
finite mixture models; Dirichlet mixture; EM; MML; SAR images; shadow modeling; texture summarization;
D O I
10.1109/TKDE.2006.133
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an unsupervised algorithm for learning a finite Dirichlet mixture model. An important part of the unsupervised learning problem is determining the number of clusters which best describe the data. We extend the minimum message length (MML) principle to determine the number of clusters in the case of Dirichlet mixtures. Parameter estimation is done by the expectation-maximization algorithm. The resulting method is validated for one-dimensional and multidimensional data. For the one-dimensional data, the experiments concern artificial and real SAR image histograms. The validation for multidimensional data involves synthetic data and two real applications: shadow detection in images and summarization of texture image databases for efficient retrieval. A comparison with results obtained for other selection criteria is provided.
引用
收藏
页码:993 / 1009
页数:17
相关论文
共 46 条