Vibrational spectroscopy of mass-selected [UO2(ligand)n]2+ complexes in the gas phase:: Comparison with theory

被引:94
作者
Groenewold, GS [1 ]
Gianotto, AK
Cossel, KC
Van Stipdonk, MJ
Moore, DT
Polfer, N
Oomens, J
de Jong, WA
Visscher, L
机构
[1] Idaho Natl Lab, Idaho Falls, ID 83415 USA
[2] Wichita State Univ, Wichita, KS USA
[3] EURATOM, FOM, Inst Plasmafys Rijnhuizen, Nieuwegein, Netherlands
[4] Pacific NW Natl Lab, Richland, WA 99352 USA
[5] Vrije Univ Amsterdam, Amsterdam, Netherlands
关键词
D O I
10.1021/ja058106n
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The gas-phase infrared spectra of discrete uranyl ([UO2](2+)) complexes ligated with acetone and/ or acetonitrile were used to evaluate systematic trends of ligation on the position of the O=U=O stretch and to enable rigorous comparison with the results of computational studies. Ionic uranyl complexes isolated in a Fourier transform ion cyclotron resonance mass spectrometer were fragmented via infrared multiphoton dissociation using a free electron laser scanned over the mid-IR wavelengths. The asymmetric O=U=O stretching frequency was measured at 1017 cm(-1) for [UO2(CH3COCH3)(2)](2+) and was systematically red shifted to 1000 and 988 cm-1 by the addition of a third and fourth acetone ligand, respectively, which was consistent with increased donation of electron density to the uranium center in complexes with higher coordination number. The values generated computationally using LDA, B3LYP, and ZORA-PW91 were in good agreement with experimental measurements. In contrast to the uranyl frequency shifts, the carbonyl frequencies of the acetone ligands were progressively blue shifted as the number of ligands increased from two to four and approached that of free acetone. This observation was consistent with the formation of weaker noncovalent bonds between uranium and the carbonyl oxygen as the extent of ligation increases. Similar trends were observed for [UO2(CH3CN)(n)](2+) complexes, although the uranyl asymmetric stretching frequencies were greater than those measured for acetone complexes having equivalent coordination, which is consistent with the fact that acetonitrile is a weaker nucleophile than is acetone. This conclusion was confirmed by the uranyl stretching frequencies measured for mixed acetone/acetonitrile complexes, which showed that substitution of one acetone for one acetonitrile produced a modest red shift of 3-6 cm(-1).
引用
收藏
页码:4802 / 4813
页数:12
相关论文
共 129 条
[71]   INFRARED SPECTRA AND STRUCTURE OF URANYL AND TRANSURANIUM (V) AND (VI) IONS IN AQUEOUS PERCHLORIC ACID SOLUTION [J].
JONES, LH ;
PENNEMAN, RA .
JOURNAL OF CHEMICAL PHYSICS, 1953, 21 (03) :542-544
[72]   Recent developments in computational actinide chemistry [J].
Kaltsoyannis, N .
CHEMICAL SOCIETY REVIEWS, 2003, 32 (01) :9-16
[74]   PSEUDOPOTENTIAL APPROACHES TO CA, SR, AND BA HYDRIDES - WHY ARE SOME ALKALINE-EARTH MX2 COMPOUNDS BENT [J].
KAUPP, M ;
SCHLEYER, PV ;
STOLL, H ;
PREUSS, H .
JOURNAL OF CHEMICAL PHYSICS, 1991, 94 (02) :1360-1366
[75]   High performance computational chemistry:: An overview of NWChem a distributed parallel application [J].
Kendall, RA ;
Aprà, E ;
Bernholdt, DE ;
Bylaska, EJ ;
Dupuis, M ;
Fann, GI ;
Harrison, RJ ;
Ju, JL ;
Nichols, JA ;
Nieplocha, J ;
Straatsma, TP ;
Windus, TL ;
Wong, AT .
COMPUTER PHYSICS COMMUNICATIONS, 2000, 128 (1-2) :260-283
[76]   ENERGY-ADJUSTED PSEUDOPOTENTIALS FOR THE ACTINIDES - PARAMETER SETS AND TEST CALCULATIONS FOR THORIUM AND THORIUM MONOXIDE [J].
KUCHLE, W ;
DOLG, M ;
STOLL, H ;
PREUSS, H .
JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (10) :7535-7542
[77]   Theoretical infrared spectra for polycyclic aromatic hydrocarbon neutrals, cations, and anions [J].
Langhoff, SR .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (08) :2819-2841
[78]   TAILORED EXCITATION FOR FOURIER-TRANSFORM ION-CYCLOTRON RESONANCE MASS-SPECTROMETRY [J].
MARSHALL, AG ;
WANG, TCL ;
RICCA, TL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1985, 107 (26) :7893-7897
[79]  
Marshall AG, 1998, MASS SPECTROM REV, V17, P1, DOI 10.1002/(SICI)1098-2787(1998)17:1<1::AID-MAS1>3.0.CO
[80]  
2-K