Mesh based construction of flat-top partition of unity functions

被引:25
作者
Hong, Won-Tak [1 ]
Lee, Phill-Seung [1 ,2 ]
机构
[1] Korea Adv Inst Sci & Technol, Inst Design Complex Syst, Taejon 305701, South Korea
[2] KAIST Ocean Syst Engn, Taejon 305701, South Korea
关键词
Partition of unity; Flat-top; Generalized finite element method (GFEM); FINITE-ELEMENT-METHOD;
D O I
10.1016/j.amc.2013.02.055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A novel idea to construct flat-top partition of unity functions in a closed form on a general (structured or unstructured) finite element mesh is presented. An efficient and practical construction method of a flat-top partition of unity function is important in the generalized finite element method (GFEM). Details on how to construct flat-top partition of unity functions on a provided mesh are given. The generalized finite element approximation with the use of the new flat-top partition of unity function is presented with various numerical examples that demonstrate the effectiveness of proposed flat-top partition of unity functions. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:8687 / 8704
页数:18
相关论文
共 32 条
[1]  
Atluri S.N., 2002, The Meshless Method
[2]  
Babuska I., 2003, Acta Numerica, V12, P1, DOI 10.1017/S0962492902000090
[3]  
Babuska I, 1997, INT J NUMER METH ENG, V40, P727, DOI 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO
[4]  
2-N
[5]   GENERALIZED FINITE ELEMENT METHODS - MAIN IDEAS, RESULTS AND PERSPECTIVE [J].
Babuska, Ivo ;
Banerjee, Uday ;
Osborn, John E. .
INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2004, 1 (01) :67-103
[6]  
Bathe K.-J., 2006, FINITE ELEMENT PROCE
[7]   Meshless methods: An overview and recent developments [J].
Belytschko, T ;
Krongauz, Y ;
Organ, D ;
Fleming, M ;
Krysl, P .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 139 (1-4) :3-47
[8]   A note on the singular linear system of the generalized finite element methods [J].
Cho, Durkbin .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (15) :6691-6699
[9]  
CIARLET P. G., 2002, Classics in Appl. Math., V40
[10]  
Daux C, 2000, INT J NUMER METH ENG, V48, P1741, DOI 10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO