Maintenance of cohesin at centromeres after meiosis I in budding yeast requires a kinetochore-associated protein related to MEI-S332

被引:143
作者
Katis, VL [1 ]
Galova, M [1 ]
Rabitsch, KP [1 ]
Gregan, J [1 ]
Nasmyth, K [1 ]
机构
[1] Res Inst Mol Pathol, A-1030 Vienna, Austria
关键词
D O I
10.1016/j.cub.2004.03.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: The halving of chromosome number that occurs during meiosis depends on three factors. First, homologs must pair and recombine. Second, sister centromeres must attach to microtubules that emanate from the same spindle pole, which ensures that homologous maternal and paternal pairs can be pulled in opposite directions (called homolog biorientation). Third, cohesion between sister centromeres must persist after the first meiotic division to enable their biorientation at the second. Results: A screen performed in fission yeast to identify meiotic chromosome missegregation mutants has identified a conserved protein called Sgo1 that is required to maintain sister chromatid cohesion after the first meiotic division. We describe here an orthologous protein in the budding yeast S. cerevisiae (Sc), which has not only meiotic but also mitotic chromosome segregation functions. Deletion of Sc SGO1 not only causes frequent homolog nondisjunction at meiosis I but also random segregation of sister centromeres at meiosis II. Meiotic cohesion fails to persist at centromeres after the first meiotic division, and sister centromeres frequently separate precociously. Sgo1 is a kinetochore-associated protein whose abundance declines at anaphase I but, nevertheless, persists on chromatin until anaphase II. Conclusions: The finding that Sgo1 is localized to the centromere at the time of the first division suggests that it may play a direct role in preventing the removal of centromeric cohesin. The similarity in sequence composition, chromosomal location, and mutant phenotypes of sgo1 mutants in two distant yeasts with that of MEI-S332 in Drosophila suggests that these proteins define an orthologous family conserved in most eukaryotic lineages.
引用
收藏
页码:560 / 572
页数:13
相关论文
共 36 条
[1]   Phosphorylation of the cohesin subunit Scc1 by Polo/Cdc5 kinase regulates sister chromatid separation in yeast [J].
Alexandru, G ;
Uhlmann, F ;
Mechtler, K ;
Poupart, MA ;
Nasmyth, K .
CELL, 2001, 105 (04) :459-472
[2]   Fission yeast Bub1 is essential in setting up the meiotic pattern of chromosome segregation [J].
Bernard, P ;
Maure, JF ;
Javerzat, JP .
NATURE CELL BIOLOGY, 2001, 3 (05) :522-526
[3]   Disjunction of homologous chromosomes in meiosis I depends on proteolytic cleavage of the meiotic cohesin Rec8 by separin [J].
Buonomo, SBC ;
Clyne, RK ;
Fuchs, J ;
Loidl, J ;
Uhlmann, F ;
Nasmyth, K .
CELL, 2000, 103 (03) :387-398
[4]   Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p [J].
CohenFix, O ;
Peters, JM ;
Kirschner, MW ;
Koshland, D .
GENES & DEVELOPMENT, 1996, 10 (24) :3081-3093
[5]   Cut2 proteolysis required for sister-chromatid separation in fission yeast [J].
Funabiki, H ;
Yamano, H ;
Kumada, K ;
Nagao, K ;
Hunt, T ;
Yanagida, M .
NATURE, 1996, 381 (6581) :438-441
[6]   Spindle checkpoint proteins and chromosome-microtubule attachment in budding yeast [J].
Gillett, ES ;
Espelin, CW ;
Sorger, PK .
JOURNAL OF CELL BIOLOGY, 2004, 164 (04) :535-546
[7]   MECHANISMS OF CHROMOSOME ORIENTATION REVEALED BY 2 MEIOTIC MUTANTS IN DROSOPHILA-MELANOGASTER [J].
GOLDSTEIN, LSB .
CHROMOSOMA, 1980, 78 (01) :79-111
[8]   SACCHAROMYCES-CEREVISIAE GENES REQUIRED FOR CELL-CYCLE ARREST IN RESPONSE TO LOSS OF MICROTUBULE FUNCTION [J].
HOYT, MA ;
TOTIS, L ;
ROBERTS, BT .
CELL, 1991, 66 (03) :507-517
[9]   MEI-S332, A DROSOPHILA PROTEIN REQUIRED FOR SISTER-CHROMATID COHESION, CAN LOCALIZE TO MEIOTIC CENTROMERE REGIONS [J].
KERREBROCK, AW ;
MOORE, DP ;
WU, JS ;
ORRWEAVER, TL .
CELL, 1995, 83 (02) :247-256
[10]   Rec8 cleavage by separase is required for meiotic nuclear divisions in fission yeast [J].
Kitajima, TS ;
Miyazaki, Y ;
Yamamoto, M ;
Watanabe, Y .
EMBO JOURNAL, 2003, 22 (20) :5643-5653