Exploring Meerwein-Ponndorf-Verley Reduction Chemistry for Biomass Catalysis Using a First-Principles Approach

被引:95
作者
Assary, Rajeev S. [1 ]
Curtiss, Larry A. [1 ,2 ]
Dumesic, James A. [3 ]
机构
[1] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
[2] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
[3] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA
来源
ACS CATALYSIS | 2013年 / 3卷 / 12期
关键词
liquid phase catalytic hydrogenation; quantum chemical studies; free energy landscapes; activation free energy barriers; aldol reactions; EFFECTIVE CORE POTENTIALS; TRANSPORTATION FUELS; FURFURYL ALCOHOL; LEVULINIC ACID; SN-BETA; GAMMA-VALEROLACTONE; BASIS-SETS; CONVERSION; THERMOCHEMISTRY; CELLULOSE;
D O I
10.1021/cs400479m
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Liquid phase catalytic hydrogenation of decomposition products of sugar molecules is challenging, but essential to produce platform chemicals and green chemicals from biomass. The Meerwein-Ponndorf-Verley (MPV) reduction chemistry is an excellent choice for the hydrogenation of keto compounds. The energy landscapes for the liquid phase catalytic hydrogenation of ethyl levulinate (EL) and furfural (FF) by Sn(IV) and Zr(IV) zeolite-like catalytic sites utilizing the hydrogen atoms from an isopropanol (IPA) solvent are explored using quantum chemical methods. The computed apparent activation free energy for the catalytic hydrogenation of EL by a Sn(IV) zeolite-like catalyst model site is (21.9 kcal/mol), which is close to the Al(III)-isopropoxide catalyzed (20.7 kcal/mol) EL hydrogenation indicating the similar efficiency of the Sn(IV) zeolite-like catalyst compared with the Al(III) catalyst used in the traditional MPV reactions. The catalytic efficiency of metal isopropoxides for the catalytic hydrogenation of EL is computed to be Al(III) > Sn(IV) > Zr(IV) in IPA solution, in agreement with experiment. Calculations were also performed with furfuryl alcohol as the source for hydrogen for the conversion of EL to gamma-valerolactone using the Sn(IV) catalytic site. The barrier (22.7 kcal/mol) suggests a hydrogenation using aromatic primary alcohol as a hydrogen donor and using a Sn(IV) catalyst is feasible. In terms of reaction mechanisms, an intramolecular hydride transfer through a six membered transition state was found to be the turnover controlling transition state of liquid phase catalytic hydrogenation of carbonyl compounds considered in this study.
引用
收藏
页码:2694 / 2704
页数:11
相关论文
共 49 条
[1]   Comparison of Sugar Molecule Decomposition through Glucose and Fructose: A High-Level Quantum Chemical Study [J].
Assary, Rajeev S. ;
Curtiss, Larry A. .
ENERGY & FUELS, 2012, 26 (02) :1344-1352
[2]   Thermochemistry and Reaction Barriers for the Formation of Levoglucosenone from Cellobiose [J].
Assary, Rajeev S. ;
Curtiss, Larry A. .
CHEMCATCHEM, 2012, 4 (02) :200-205
[3]   Theoretical Study of 1,2-Hydride Shift Associated with the Isomerization of Glyceraldehyde to Dihydroxy Acetone by Lewis Acid Active Site Models [J].
Assary, Rajeev S. ;
Curtiss, Larry A. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2011, 115 (31) :8754-8760
[4]   Mechanistic Insights into the Decomposition of Fructose to Hydroxy Methyl Furfural in Neutral and Acidic Environments Using High-Level Quantum Chemical Methods [J].
Assary, Rajeev S. ;
Redfern, Paul C. ;
Greeley, Jeffrey ;
Curtiss, Larry A. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (15) :4341-4349
[5]   Computational Studies of the Thermochemistry for Conversion of Glucose to Levulinic Acid [J].
Assary, Rajeev S. ;
Redfern, Paul C. ;
Hammond, Jeff R. ;
Greeley, Jeffrey ;
Curtiss, Larry A. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (27) :9002-9009
[6]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[7]   Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites [J].
Bermejo-Deval, Ricardo ;
Assary, Rajeev S. ;
Nikolla, Eranda ;
Moliner, Manuel ;
Roman-Leshkov, Yuriy ;
Hwang, Son-Jong ;
Palsdottir, Arna ;
Silverman, Dorothy ;
Lobo, Raul F. ;
Curtiss, Larry A. ;
Davis, Mark E. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (25) :9727-9732
[8]   Integrated Catalytic Conversion of γ-Valerolactone to Liquid Alkenes for Transportation Fuels [J].
Bond, Jesse Q. ;
Alonso, David Martin ;
Wang, Dong ;
West, Ryan M. ;
Dumesic, James A. .
SCIENCE, 2010, 327 (5969) :1110-1114
[9]   Determination of the catalytically active oxidation Lewis acid sites in Sn-beta zeolites, and their optimisation by the combination of theoretical and experimental studies [J].
Boronat, M ;
Concepción, P ;
Corma, A ;
Renz, M ;
Valencia, S .
JOURNAL OF CATALYSIS, 2005, 234 (01) :111-118
[10]   Peculiarities of Sn-Beta and potential industrial applications [J].
Boronat, Mercedes ;
Concepcion, Patricia ;
Corma, Avelino ;
Renz, Michael .
CATALYSIS TODAY, 2007, 121 (1-2) :39-44