Deep Brain Stimulation Reduces Neuronal Entropy in the MPTP-Primate Model of Parkinson's Disease

被引:129
作者
Dorval, Alan D. [1 ]
Russo, Gary S. [2 ]
Hashimoto, Takao [3 ]
Xu, Weidong [2 ]
Grill, Warren M. [1 ]
Vitek, Jerrold L. [2 ]
机构
[1] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
[2] Cleveland Clin Fdn, Dept Neurosci, Cleveland, OH 44195 USA
[3] Aizawa Hosp, Ctr Neurol Dis, Matsumoto, Nagano, Japan
关键词
D O I
10.1152/jn.90763.2008
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Dorval AD, Russo GS, Hashimoto T, Xu W, Grill WM, Vitek JL. Deep brain stimulation reduces neuronal entropy in the MPTP-primate model of Parkinson's disease. J Neurophysiol 100: 2807-2818, 2008. First published September 10, 2008; doi: 10.1152/jn.90763.2008. High-frequency stimulation (HFS) of the subthalamic nucleus (STN) or internal segment of the globus pallidus is a clinically successful treatment for the motor symptoms of Parkinson's disease. However, the mechanisms by which HFS alleviates these symptoms are not understood. Whereas initial studies focused on HFS-induced changes in neuronal firing rates, recent studies suggest that changes in patterns of neuronal activity may correlate with symptom alleviation. We hypothesized that effective STN HFS reduces the disorder of neuronal firing patterns in the basal ganglia thalamic circuit, minimizing the pathological activity associated with parkinsonism. Stimulating leads were implanted in the STN of two rhesus monkeys rendered parkinsonian by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Action potentials were recorded from neurons of the internal and external globus pallidus and the motor thalamus (ventralis anterior, ventralis lateralis pars oralis, and ventralis posterior lateralis pars oralis) during HFS that reduced motor symptoms and during clinically ineffective low-frequency stimulation (LFS). Firing pattern entropy was calculated from the recorded spike times to quantify the disorder of the neuronal activity. The firing pattern entropy of neurons within each region of the pallidum and motor thalamus decreased in response to HFS (n >= 18 and P <= 0.02 in each region), whereas firing rate changes were specific to pallidal neurons only. In response to LFS, firing rates were unchanged, but firing pattern entropy increased throughout the circuit (n >= 24 and P <= 10(-4) in each region). These data suggest that the clinical effectiveness of HFS is correlated with, and potentially mediated by, a regularization of the pattern of neuronal activity throughout the basal ganglia thalamic circuit.
引用
收藏
页码:2807 / 2818
页数:12
相关论文
共 60 条
[1]   Effects of high-frequency stimulation in the internal globus pallidus on the activity of thalamic neurons in the awake monkey [J].
Anderson, ME ;
Postupna, N ;
Ruffo, M .
JOURNAL OF NEUROPHYSIOLOGY, 2003, 89 (02) :1150-1160
[2]  
[Anonymous], 1955, INFORM THEORY PSYCHO
[3]  
ASANUMA C, 1994, EXP BRAIN RES, V101, P439
[4]   Complex locking rather than complete cessation of neuronal activity in the globus pallidus of a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated primate in response to pallidal microstimulation [J].
Bar-Gad, I ;
Elias, S ;
Vaadia, E ;
Bergman, H .
JOURNAL OF NEUROSCIENCE, 2004, 24 (33) :7410-7419
[5]  
Benabid AL, 1998, MOVEMENT DISORD, V13, P119
[6]   Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat [J].
Benazzouz, A ;
Gao, DM ;
Ni, ZG ;
Piallat, B ;
Bouali-Benazzouz, R ;
Benabid, AL .
NEUROSCIENCE, 2000, 99 (02) :289-295
[7]   THE PRIMATE SUBTHALAMIC NUCLEUS .2. NEURONAL-ACTIVITY IN THE MPTP MODEL OF PARKINSONISM [J].
BERGMAN, H ;
WICHMANN, T ;
KARMON, B ;
DELONG, MR .
JOURNAL OF NEUROPHYSIOLOGY, 1994, 72 (02) :507-520
[8]   High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons [J].
Beurrier, C ;
Bioulac, B ;
Audin, J ;
Hammond, C .
JOURNAL OF NEUROPHYSIOLOGY, 2001, 85 (04) :1351-1356
[9]   High frequency stimulation of the internal Globus Pallidus (GPi) simultaneously improves parkinsonian symptoms and reduces the firing frequency of GPi neurons in the MPTP-treated monkey [J].
Boraud, T ;
Bezard, E ;
Bioulac, B ;
Gross, C .
NEUROSCIENCE LETTERS, 1996, 215 (01) :17-20
[10]   Effects of stimulation of the subthalamic area on oscillatory pallidal activity in Parkinson's disease [J].
Brown, P ;
Mazzone, P ;
Oliviero, A ;
Altibrandi, MG ;
Pilato, F ;
Tonali, PA ;
Di Lazzaro, V .
EXPERIMENTAL NEUROLOGY, 2004, 188 (02) :480-490