Artificial photosynthesis for solar water-splitting

被引:1830
作者
Tachibana, Yasuhiro [1 ,2 ,3 ]
Vayssieres, Lionel [4 ]
Durrant, James R. [5 ]
机构
[1] RMIT Univ, Sch Aerosp Mech & Mfg Engn, Bundoora, Vic 3083, Australia
[2] Japan Sci & Technol Agcy JST, PRESTO, Kawaguchi, Saitama 3320012, Japan
[3] Osaka Univ, CASI, Suita, Osaka 5650871, Japan
[4] Xi An Jiao Tong Univ, Sch Energy & Power Engn, State Key Lab Multiphase Flow Power Engn, Int Res Ctr Renewable Energy, Xian 710049, Peoples R China
[5] Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AZ, England
基金
中国国家自然科学基金; 欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
CHARGE RECOMBINATION KINETICS; HYDROGEN-PRODUCTION; ALPHA-FE2O3; FILMS; CRYSTAL-STRUCTURE; PHOTOSYSTEM-II; LIGHT; OXIDATION; DRIVEN; PHOTOCATALYSTS; EFFICIENCY;
D O I
10.1038/nphoton.2012.175
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Hydrogen generated from solar-driven water-splitting has the potential to be a clean, sustainable and abundant energy source. Inspired by natural photosynthesis, artificial solar water-splitting devices are now being designed and tested. Recent developments based on molecular and/or nanostructure designs have led to advances in our understanding of light-induced charge separation and subsequent catalytic water oxidation and reduction reactions. Here we review some of the recent progress towards developing artificial photosynthetic devices, together with their analogies to biological photosynthesis, including technologies that focus on the development of visible-light active hetero-nanostructures and require an understanding of the underlying interfacial carrier dynamics. Finally, we propose a vision for a future sustainable hydrogen fuel community based on artificial photosynthesis.
引用
收藏
页码:511 / 518
页数:8
相关论文
共 100 条
[71]  
Shen SH, 2011, INT J NANOTECHNOL, V8, P523, DOI 10.1504/IJNT.2011.040192
[72]   DETAILED BALANCE LIMIT OF EFFICIENCY OF P-N JUNCTION SOLAR CELLS [J].
SHOCKLEY, W ;
QUEISSER, HJ .
JOURNAL OF APPLIED PHYSICS, 1961, 32 (03) :510-&
[73]   Structures and Energetics for O2 Formation in Photosystem II [J].
Siegbahn, Per E. M. .
ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (12) :1871-1880
[74]   Direct Observation of a Hydroperoxide Surface Intermediate upon Visible Light-Driven Water Oxidation at an Ir Oxide Nanocluster Catalyst by Rapid-Scan FT-IR Spectroscopy [J].
Sivasankar, Narayanappa ;
Weare, Walter W. ;
Frei, Heinz .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (33) :12976-12979
[75]   Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes [J].
Sivula, Kevin ;
Le Formal, Florian ;
Graetzel, Michael .
CHEMSUSCHEM, 2011, 4 (04) :432-449
[76]   Silver Nanoparticle Induced Photocurrent Enhancement at WO3 Photoanodes [J].
Solarska, Renata ;
Krolikowska, Agata ;
Augustynski, Jan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (43) :7980-7983
[77]   Composite photoanodes for photoelectrochemical solar water splitting [J].
Sun, Jianwei ;
Zhong, Diane K. ;
Gamelin, Daniel R. .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (09) :1252-1261
[78]   Subpicosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide films [J].
Tachibana, Y ;
Moser, JE ;
Gratzel, M ;
Klug, DR ;
Durrant, JR .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (51) :20056-20062
[79]   Charge Recombination Kinetics at an in Situ Chemical Bath-Deposited CdS/Nanocrystalline TiO2 Interface [J].
Tachibana, Yasuhiro ;
Umekita, Kazuya ;
Otsuka, Yasuhide ;
Kuwabata, Susumu .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (16) :6852-6858
[80]   All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system [J].
Tada, Hiroaki ;
Mitsui, Tomohiro ;
Kiyonaga, Tomokazu ;
Akita, Tomoki ;
Tanaka, Koji .
NATURE MATERIALS, 2006, 5 (10) :782-786