Optimal fuzzy inference for short-term load forecasting

被引:128
作者
Mori, H [1 ]
Kobayashi, H [1 ]
机构
[1] MEIJI UNIV,FAC ELECT ENGN,DEPT ELECT ENGN,TAMA KU,KAWASAKI,KANAGAWA 214,JAPAN
关键词
fuzzy inference; nonlinear approximation; simulated annealing; supervised learning; short-term load forecasting;
D O I
10.1109/59.486123
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes an optimal fuzzy inference method for short-term load forecasting. The proposed method constructs an optimal structure of the simplified fuzzy inference that minimizes model errors and the climber of the membership functions To grasp nonlinear behavior of power system short-term loads. The model is identified by simulated annealing and the steepest descent method. The proposed method is demonstrated in examples.
引用
收藏
页码:390 / 396
页数:7
相关论文
共 27 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]  
[Anonymous], 1976, TIME SERIES ANAL
[3]  
ARAKI S, 1991, J JAPAN SOC FUZZY TH, V4, P722
[4]  
CASTRO JL, 1993, EUFIT 93 AACH, P804
[5]  
CHEN ST, 1991, IEEE PES 1991 SUMM M
[6]  
DASH PK, 1993, P 2 INT FOR APPL NEU, P432
[7]  
ELSHARKAWI MA, 1993, P 2 INT FOR APPL NEU, P66
[8]  
GONZALEZ A, 1993, EUFIT 93 AACH, P814
[9]  
GROSS G, 1987, P IEEE, V75
[10]  
HAGAN M, 1977, IEEE PES SUMM M MEX