Geometry of families of random projections of symmetric convex bodies

被引:17
作者
Mankiewicz, P
Tomczak-Jaegermann, N
机构
[1] Polish Acad Sci, Inst Math, PL-00950 Warsaw, Poland
[2] Univ Alberta, Dept Math Sci, Edmonton, AB T6G 2G1, Canada
关键词
D O I
10.1007/s00039-001-8231-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the diameter of a family of random n-dimensional orthogonal projections of an arbitrary symmetric convex body in R-N, and we show that this diameter is larger than or equal to the square of Euclidean distances of random k-dimensional projections of the body (where k = (1/2 - epsilon)n, for any epsilon > 0). The drop of dimension is necessary and the formula is in a certain sense optimal.
引用
收藏
页码:1282 / 1326
页数:45
相关论文
共 21 条
[1]  
ANDERSON TW, 1958, INTRO MULTIVARIED ST
[2]  
BOURGAIN J, 1988, LECT NOTES MATH, V1317, P239
[3]  
GIANNOPOULOS A, IN PRESS HDB FUNCTIO
[4]   DIAMETER OF THE MINKOWSKI COMPACTUM IS APPROXIMATELY EQUAL TO-N [J].
GLUSKIN, ED .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1981, 15 (01) :57-58
[5]   A SOLUTION OF THE FINITE-DIMENSIONAL HOMOGENEOUS BANACH-SPACE PROBLEM [J].
MANKIEWICZ, P ;
TOMCZAKJAEGERMANN, N .
ISRAEL JOURNAL OF MATHEMATICS, 1991, 75 (2-3) :129-159
[6]  
MANKIEWICZ P, IN PRESS HDB FUNCTIO
[7]  
Milman V., 1971, FUNCT ANAL APPL, V5, P28
[8]  
Milman V.D., 1986, SPRINGER LECT NOTES, V1200
[9]  
MILMAN VD, 1988, LECT NOTES MATH, V1317, P107
[10]   Global versus local asymptotic theories of finite-dimensional normed spaces [J].
Milman, VD ;
Schechtman, G .
DUKE MATHEMATICAL JOURNAL, 1997, 90 (01) :73-93