The noncommutative space of stochastic diffusion systems

被引:5
作者
Aneva, B [1 ]
机构
[1] LMU Univ, Phys Dept, INRNE, Bulgarian Acad Sci, Sofia 1784, Bulgaria
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2002年 / 35卷 / 04期
关键词
D O I
10.1088/0305-4470/35/4/302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the matrix product ground states approach to n-species diffusion processes the stationary probability distribution is expressed as a matrix product state with respect to a quadratic algebra determined by the dynamics of the process. We show that the quadratic algebra defines a noncommutative space with a GL(q) (n) quantum group action as its symmetry. Boundary processes account for the appearance of parameter-dependent linear terms in the algebraic relations. We argue that for systems with boundary conditions the diffusion algebras are also obtained either by a shift of basis in the n-dimensional quantum plane or by an appropriate change of basis in a lower dimensional one which leads to a reduction of the GL(q) (n) symmetry.
引用
收藏
页码:859 / 877
页数:19
相关论文
共 42 条
[1]   REACTION-DIFFUSION PROCESSES AS PHYSICAL REALIZATIONS OF HECKE ALGEBRAS [J].
ALCARAZ, FC ;
RITTENBERG, V .
PHYSICS LETTERS B, 1993, 314 (3-4) :377-380
[2]   N-species stochastic models with boundaries and quadratic algebras [J].
Alcaraz, FC ;
Dasmahapatra, S ;
Rittenberg, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (03) :845-878
[3]   LATTICE DIFFUSION AND HEISENBERG-FERROMAGNET [J].
ALEXANDER, S ;
HOLSTEIN, T .
PHYSICAL REVIEW B, 1978, 18 (01) :301-302
[4]   Stochastic models on a ring and quadratic algebras. The three-species diffusion problem [J].
Arndt, PF ;
Heinzel, T ;
Rittenberg, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (03) :833-843
[5]   Exact solution of a partially asymmetric exclusion model using a deformed oscillator algebra [J].
Blythe, RA ;
Evans, MR ;
Colaiori, F ;
Essler, FHL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (12) :2313-2332
[6]   Cellular automata model of car traffic in a two-dimensional street network [J].
Chopard, B ;
Luthi, PO ;
Queloz, PA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (10) :2325-2336
[7]   REPTATION OF A POLYMER CHAIN IN PRESENCE OF FIXED OBSTACLES [J].
DEGENNES, PG .
JOURNAL OF CHEMICAL PHYSICS, 1971, 55 (02) :572-+
[8]   An exactly soluble non-equilibrium system: The asymmetric simple exclusion process [J].
Derrida, B .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 301 (1-3) :65-83
[9]   EXACT SOLUTION OF A 1D ASYMMETRIC EXCLUSION MODEL USING A MATRIX FORMULATION [J].
DERRIDA, B ;
EVANS, MR ;
HAKIM, V ;
PASQUIER, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (07) :1493-1517
[10]   EXACT SOLUTION OF THE TOTALLY ASYMMETRIC SIMPLE EXCLUSION PROCESS - SHOCK PROFILES [J].
DERRIDA, B ;
JANOWSKY, SA ;
LEBOWITZ, JL ;
SPEER, ER .
JOURNAL OF STATISTICAL PHYSICS, 1993, 73 (5-6) :813-842