On limited nondeterminism and the complexity of the V-C dimension

被引:90
作者
Papadimitriou, CH [1 ]
Yannakakis, M [1 ]
机构
[1] AT&T BELL LABS, MURRAY HILL, NJ 07974 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jcss.1996.0058
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We characterize precisely the complexity of several natural computational problems in NP, which have been proposed but not categorized satisfactorily in the literature: Computing the Vapnik-Chervonenkis dimension of a 0-1 matrix; finding the minimum dominating set of a tournament; satisfying a Boolean expression by perturbing the default truth assignment; and several others. These problems can be solved in n(O(log n)) time, and thus, they are probably not NP-complete. We define two new complexity classes between P and NP, very much in the spirit of MAXNP and MAXSNP. We show that computing the V-C dimension is complete for the more general class, while the other two problems are complete for the weaker class. (C) 1996 Academic Press. Inc.
引用
收藏
页码:161 / 170
页数:10
相关论文
共 23 条
[1]   ON THE COMPLEXITY OF FIXED PARAMETER PROBLEMS [J].
ABRAHAMSON, KR ;
FELLOWS, MR ;
ELLIS, JA ;
MATA, ME .
30TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 1989, :210-215
[2]  
ARORA S, 1992, AN S FDN CO, P14
[3]   ARTHUR-MERLIN GAMES - A RANDOMIZED PROOF SYSTEM, AND A HIERARCHY OF COMPLEXITY CLASSES [J].
BABAI, L ;
MORAN, S .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1988, 36 (02) :254-276
[4]   LEARNABILITY AND THE VAPNIK-CHERVONENKIS DIMENSION [J].
BLUMER, A ;
EHRENFEUCHT, A ;
HAUSSLER, D ;
WARMUTH, MK .
JOURNAL OF THE ACM, 1989, 36 (04) :929-965
[5]  
CAI L, 1993, LECT NOTES COMPUT SC, V2, P311
[6]  
CHAZELLE B, 1990, P 29 ANN IEEE S FDN, P539
[7]   CLASSES OF BOUNDED NONDETERMINISM [J].
DIAZ, J ;
TORAN, J .
MATHEMATICAL SYSTEMS THEORY, 1990, 23 (01) :21-32
[8]  
DOWNEY RG, 1992, STRUCT COMPL TH CONF, P36, DOI 10.1109/SCT.1992.215379
[9]   HOW EASY IS LOCAL SEARCH [J].
JOHNSON, DS ;
PAPADIMITRIOU, CH ;
YANNAKAKIS, M .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1988, 37 (01) :79-100
[10]   REFINING NONDETERMINISM IN RELATIVIZED POLYNOMIAL-TIME BOUNDED COMPUTATIONS [J].
KINTALA, CMR ;
FISCHER, PC .
SIAM JOURNAL ON COMPUTING, 1980, 9 (01) :46-53