Microfabricated drug delivery devices

被引:75
作者
Hilt, JZ
Peppas, NA
机构
[1] Univ Texas, Dept Chem & Biomed Engn, Austin, TX 78712 USA
[2] Univ Texas, Div Pharmaceut, Austin, TX 78712 USA
[3] Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40506 USA
关键词
microfabrication; drug delivery; microdevice; microneedle;
D O I
10.1016/j.ijpharm.2005.09.022
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
We review newest developments in the design and fabrication of drug delivery devices based on micropatterned structures. Electronic devices have now reached a stage of dimensions comparable to those of biological macromolecules. This raises exciting possibilities for combining microelectronics and biotechnology to develop new technologies with unprecedented power and versatility. While molecular electronics use the unique self-assembly, switching and dynamic capabilities of molecules to miniaturize electronic devices, nanoscale biosystems use the power of microelectronics to design ultrafast/ultrasmall biocompatible devices, including implants, that can revolutionize the field of bioengineering. Thus, in recent years we have seen an explosion in the field of novel microfabricated and nanofabricated devices for drug delivery. Such devices seek to develop a platform of well controlled functions in the micro- or nano-level. They include nanoparticulate systems, recognitive molecular systems, biosensing devices, and microfabricated and microelectronic devices. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:15 / 23
页数:9
相关论文
共 44 条
[1]   Micromechanical cantilever as an ultrasensitive pH microsensor [J].
Bashir, R ;
Hilt, JZ ;
Elibol, O ;
Gupta, A ;
Peppas, NA .
APPLIED PHYSICS LETTERS, 2002, 81 (16) :3091-3093
[2]   Functional hydrogel structures for autonomous flow control inside microfluidic channels [J].
Beebe, DJ ;
Moore, JS ;
Bauer, JM ;
Yu, Q ;
Liu, RH ;
Devadoss, C ;
Jo, BH .
NATURE, 2000, 404 (6778) :588-+
[3]  
BERGMANN NM, 2004, ADV BIOMATERIALS BIO, P1
[4]   Surface micromachining for microelectromechanical systems [J].
Bustillo, JM ;
Howe, RT ;
Muller, RS .
PROCEEDINGS OF THE IEEE, 1998, 86 (08) :1552-1574
[5]  
Byrne ME, 2002, MATER RES SOC SYMP P, V724, P193
[6]   Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology [J].
Cao, L ;
Mantell, S ;
Polla, D .
SENSORS AND ACTUATORS A-PHYSICAL, 2001, 94 (1-2) :117-125
[7]   A multichannel neural probe for selective chemical delivery at the cellular level [J].
Chen, JK ;
Wise, KD ;
Hetke, JF ;
Bledsoe, SC .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1997, 44 (08) :760-769
[8]   A valved responsive hydrogel microdispensing device with integrated pressure source [J].
Eddington, DT ;
Beebe, DJ .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2004, 13 (04) :586-593
[9]   Multi-pulse drug delivery from a resorbable polymeric microchip device [J].
Grayson, ACR ;
Choi, IS ;
Tyler, BM ;
Wang, PP ;
Brem, H ;
Cima, MJ ;
Langer, R .
NATURE MATERIALS, 2003, 2 (11) :767-772
[10]   Ultrasensitive biomems sensors based on microcantilevers patterned with environmentally responsive hydrogels [J].
Hilt, JZ ;
Gupta, AK ;
Bashir, R ;
Peppas, NA .
BIOMEDICAL MICRODEVICES, 2003, 5 (03) :177-184