Sapling growth as a function of light and landscape-level variation in soil water and foliar nitrogen in northern Michigan

被引:79
作者
Kobe, RK [1 ]
机构
[1] Michigan State Univ, Dept Forestry, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
forest dynamics; forest composition; forest communities; resource effects; species distributions; succession;
D O I
10.1007/s00442-005-0252-8
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Interspecific differences in sapling growth responses to soil resources could influence species distributions across soil resource gradients. I calibrated models of radial growth as a function of light intensity and landscape-level variation in soil water and foliar N for saplings of four canopy tree species, which differ in adult distributions across soil resource gradients. Model formulations, characterizing different resource effects and modes of influencing growth, were compared based on relative empirical support using Akaike's Information Criterion. Contrary to expectation, the radial growth of species associated with lower fertility (Acer rubrum and Quercus rubra) was more sensitive to variation in soil resources than the high fertility species Acer saccharum. Moreover, there was no species tradeoff between growth under high foliar N versus growth under low foliar N, which would be expected if growth responses to foliar N mediated distributions. In general, there was functional consistency among species in growth responses to light, foliar N, and soil water availability, respectively. Foliar N influenced primarily high-light growth in F. grandifolia, A. rubrum, and Q. rubra (but was not significant for A. saccharum). In A. saccharum and A. rubrum, for which soil water availability was a significant predictor, soil water and light availability simultaneously limited growth (i.e., either higher light or water increased growth). Simple resource-based models explained 0.74-0.90 of growth variance, indicating a high degree of determinism. Results suggest that nitrogen effects on forest dynamics would be strongest in high-light early successional communities but that water availability influences growth in both early successional and understory environments.
引用
收藏
页码:119 / 133
页数:15
相关论文
共 53 条
[11]  
Catovsky S, 2002, ECOL APPL, V12, P1056, DOI 10.1890/1051-0761(2002)012[1056:NAIROT]2.0.CO
[12]  
2
[13]   Changes in drought response strategies with ontogeny in Quercus rubra:: implications for scaling from seedlings to mature trees [J].
Cavender-Bares, J ;
Bazzaz, FA .
OECOLOGIA, 2000, 124 (01) :8-18
[14]  
Clark JS, 2003, ECOLOGY, V84, P17, DOI 10.1890/0012-9658(2003)084[0017:CHTITT]2.0.CO
[15]  
2
[16]  
CLELAND DT, 1990, FIELD GUIDE ECOLOGIC
[17]   Linking root traits to potential growth rate in six temperate tree species [J].
Comas, LH ;
Bouma, TJ ;
Eissenstat, DM .
OECOLOGIA, 2002, 132 (01) :34-43
[18]   PHOTOSYNTHESIS AND NITROGEN RELATIONSHIPS IN LEAVES OF C-3 PLANTS [J].
EVANS, JR .
OECOLOGIA, 1989, 78 (01) :9-19
[19]  
Field C.H. H.A. Mooney., 1986, EC PLANT FORM FUNCTI, P25
[20]   Herbivores promote habitat specialization by trees in amazonian forests [J].
Fine, PVA ;
Mesones, I ;
Coley, PD .
SCIENCE, 2004, 305 (5684) :663-665