Evolutions in 3D numerical relativity using fixed mesh refinement

被引:524
作者
Schnetter, E
Hawley, SH
Hawke, I
机构
[1] Univ Tubingen, Inst Astron & Astrophys, D-72076 Tubingen, Germany
[2] Univ Texas, Ctr Relat, Austin, TX 78712 USA
[3] Albert Einstein Inst, Max Planck Inst Gravitationsphys, D-14476 Golm, Germany
基金
美国国家科学基金会;
关键词
D O I
10.1088/0264-9381/21/6/014
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present results of 3D numerical simulations using a finite difference code featuring fixed mesh refinement (FMR), in which a subset of the computational domain is refined in space and time. We apply this code to a series of test cases including a robust stability test, a nonlinear gauge wave and an excised Schwarzschild black hole in an evolving gauge. We find that the mesh refinement results are comparable in accuracy, stability and convergence to unigrid simulations with the same effective resolution. At the same time, the use of FMR reduces the computational resources needed to obtain a given accuracy. Particular care must be taken at the interfaces between coarse and fine grids to avoid a loss of convergence at higher resolutions, and we introduce the use of 'buffer zones' as one resolution of this issue. We also introduce a new method for initial data generation, which enables higher order interpolation in time even from the initial time slice. This FMR system, 'Carpet', is a driver module in the freely available Cactus computational infrastructure, and is able to endow generic existing Cactus simulation modules ('thorns') with FMR with little or no extra effort.
引用
收藏
页码:1465 / 1488
页数:24
相关论文
共 54 条
[1]   Towards standard testbeds for numerical relativity [J].
Alcubierre, M ;
Allen, G ;
Bona, C ;
Fiske, D ;
Goodale, T ;
Guzmán, FS ;
Hawke, I ;
Hawley, SH ;
Husa, S ;
Koppitz, M ;
Lechner, C ;
Pollney, D ;
Rideout, D ;
Salgado, M ;
Schnetter, E ;
Seidel, E ;
Shinkai, H ;
Shoemaker, D ;
Szilágyi, B ;
Takahashi, R ;
Winicour, J .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (02) :589-613
[2]   Gauge conditions for long-term numerical black hole evolutions without excision -: art. no. 084023 [J].
Alcubierre, M ;
Brügmann, B ;
Diener, P ;
Koppitz, M ;
Pollney, D ;
Seidel, E ;
Takahashi, R .
PHYSICAL REVIEW D, 2003, 67 (08)
[3]   Black hole excision for dynamic black holes -: art. no. 061501 [J].
Alcubierre, M ;
Brügmann, B ;
Pollney, D ;
Seidel, E ;
Takahashi, R .
PHYSICAL REVIEW D, 2001, 64 (06)
[4]   Simple excision of a black hole in 3+1 numerical relativity -: art. no. 104006 [J].
Alcubierre, M ;
Brügmann, B .
PHYSICAL REVIEW D, 2001, 63 (10)
[5]   Cactus Tools for Grid Applications [J].
Gabrielle Allen ;
Werner Benger ;
Thomas Dramlitsch ;
Tom Goodale ;
Hans-Christian Hege ;
Gerd Lanfermann ;
André Merzky ;
Thomas Radke ;
Edward Seidel ;
John Shalf .
Cluster Computing, 2001, 4 (3) :179-188
[6]  
ALLEN G, 2001, P 7 INT EUR PAR C BE
[7]  
[Anonymous], 2002, THESIS U BRIT COLUMB
[8]  
[Anonymous], 1973, Methods for the Approximate Solution of Time Dependent Problems, volume 10 of Global Atmospheric Research Programme (GARP): GARP Publication Series
[9]   Numerical integration of Einstein's field equations [J].
Baumgarte, TW ;
Shapiro, SL .
PHYSICAL REVIEW D, 1999, 59 (02)
[10]   3-DIMENSIONAL ADAPTIVE MESH REFINEMENT FOR HYPERBOLIC CONSERVATION-LAWS [J].
BELL, J ;
BERGER, M ;
SALTZMAN, J ;
WELCOME, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (01) :127-138