Roles of glutamine in neurotransmission

被引:201
作者
Albrecht, Jan [1 ]
Sidoryk-Wegrzynowicz, Marta [2 ]
Zielinska, Magdalena [1 ]
Aschner, Michael [2 ]
机构
[1] Polish Acad Sci, Dept Neurotoxicol, Mossakowski Med Res Ctr, Warsaw, Poland
[2] Vanderbilt Univ, Med Ctr, Dept Pediat, Nashville, TN 37232 USA
关键词
Gln; Glu; GABA; astrocytes; synaptic endings; neural transmission; neuromodulation; brain pathology; PHOSPHATE-ACTIVATED GLUTAMINASE; MAGNETIC-RESONANCE-SPECTROSCOPY; NEUROACTIVE AMINO-ACIDS; CELL-SURFACE EXPRESSION; NITRIC-OXIDE SYNTHASE; SYSTEM-A TRANSPORT; IN-VIVO C-13-NMR; PROTEIN-KINASE; EPILEPTIFORM ACTIVITY; GABA SYNTHESIS;
D O I
10.1017/S1740925X11000093
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Glutamine (Gln) is found abundantly in the central nervous system (CNS) where it participates in a variety of metabolic pathways. Its major role in the brain is that of a precursor of the neurotransmitter amino acids: the excitatory amino acids, glutamate (Glu) and aspartate (Asp), and the inhibitory amino acid, gamma-amino butyric acid (GABA). The precursor-product relationship between Gln and Glu/GABA in the brain relates to the intercellular compartmentalization of the Gln/Glu(GABA) cycle (GGC). Gln is synthesized from Glu and ammonia in astrocytes, in a reaction catalyzed by Gln synthetase (GS), which, in the CNS, is almost exclusively located in astrocytes (Martinez-Hernandez et al., 1977). Newly synthesized Gln is transferred to neurons and hydrolyzed by phosphate-activated glutaminase (PAG) to give rise to Glu, a portion of which may be decarboxylated to GABA or transaminated to Asp. There is a rich body of evidence which indicates that a significant proportion of the Glu, Asp and GABA derived from Gln feed the synaptic, neurotransmitter pools of the amino acids. Depolarization-induced-, calcium- and PAG activity-dependent releases of Gln-derived Glu, GABA and Asp have been observed in CNS preparations in vitro and in the brain in situ. Immunocytochemical studies in brain slices have documented Gln transfer from astrocytes to neurons as well as the location of Gln-derived Glu, GABA and Asp in the synaptic terminals. Patch-clamp studies in brain slices and astrocyte/neuron co-cultures have provided functional evidence that uninterrupted Gln synthesis in astrocytes and its transport to neurons, as mediated by specific carriers, promotes glutamatergic and GABA-ergic transmission. Gln entry into the neuronal compartment is facilitated by its abundance in the extracellular spaces relative to other amino acids. Gln also appears to affect neurotransmission directly by interacting with the NMDA class of Glu receptors. Transmission may also be modulated by alterations in cell membrane polarity related to the electrogenic nature of Gln transport or to uncoupled ion conductances in the neuronal or glial cell membranes elicited by Gln transporters. In addition, Gln appears to modulate the synthesis of the gaseous messenger, nitric oxide (NO), by controlling the supply to the cells of its precursor, arginine. Disturbances of Gln metabolism and/or transport contribute to changes in Glu-ergic or GABA-ergic transmission associated with different pathological conditions of the brain, which are best recognized in epilepsy, hepatic encephalopathy and manganese encephalopathy.
引用
收藏
页码:263 / 276
页数:14
相关论文
共 162 条
[71]  
Hilgier W, 1999, J NEUROSCI RES, V56, P76, DOI 10.1002/(SICI)1097-4547(19990401)56:1<76::AID-JNR10>3.0.CO
[72]  
2-Y
[73]   Effect of glutamine synthesis inhibition with methionine sulfoximine on the nitric oxide-cyclic GMP pathway in the rat striatum treated acutely with ammonia: A microdialysis study [J].
Hilgier, Wojciech ;
Wegrzynowicz, Michal ;
Maczewski, Michal ;
Beresewicz, Andrzej ;
Oja, Simo S. ;
Saransaari, Pirjo ;
Albrecht, Jan .
NEUROCHEMICAL RESEARCH, 2008, 33 (02) :267-272
[74]   Glutamine inhibits ammonia-induced accumulation of cGMP in rat striatum limiting arginine supply for NO synthesis [J].
Hilgier, Wojciech ;
Fresko, Inez ;
Klemenska, Emilia ;
Beresewicz, Andrzej ;
Oja, Simo S. ;
Saransaari, Pirjo ;
Albrecht, Jan ;
Zielinska, Magdalena .
NEUROBIOLOGY OF DISEASE, 2009, 35 (01) :75-81
[75]   Glutamine as a precursor for transmitter glutamate, aspartate and GABA in the cerebellum: a role for phosphate-activated glutaminase [J].
Holten, Aleksander Talgoy ;
Gundersen, Vidar .
JOURNAL OF NEUROCHEMISTRY, 2008, 104 (04) :1032-1042
[76]   Metabolic coupling between glia and neurons is necessary for maintaining respiratory activity in transverse medullary slices of neonatal mouse [J].
Hülsmann, S ;
Oku, Y ;
Zhang, WQ ;
Richter, DW .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2000, 12 (03) :856-862
[77]   System A Transporter SAT2 Mediates Replenishment of Dendritic Glutamate Pools Controlling Retrograde Signaling by Glutamate [J].
Jenstad, Monica ;
Quazi, Abrar Z. ;
Zilberter, Misha ;
Haglerod, Camilla ;
Berghuis, Paul ;
Saddique, Navida ;
Goiny, Michel ;
Buntup, Doungjai ;
Davanger, Svend ;
Haug, Finn-Mogens S. ;
Barnes, Carol A. ;
McNaughton, Bruce L. ;
Ottersen, Ole Petter ;
Storm-Mathisen, Jon ;
Harkany, Tibor ;
Chaudhry, Farrukh A. .
CEREBRAL CORTEX, 2009, 19 (05) :1092-1106
[78]   SELECTIVE PROTEIN-DEGRADATION - A JOURNEYS END WITHIN THE PROTEASOME [J].
JENTSCH, S ;
SCHLENKER, S .
CELL, 1995, 82 (06) :881-884
[79]   Nedd4-2 induces endocytosis and degradation of proteolytically cleaved epithelial Na+ channels [J].
Kabra, Rajesh ;
Knight, Kristin K. ;
Zhou, Ruifeng ;
Snyder, Peter M. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (10) :6033-6039
[80]   Protein kinase C activation decreases cell surface expression of the GLT-1 subtype of glutamate transporter - Requirement of a carboxyl-terminal domain and partial dependence on serine 486 [J].
Kalandadze, A ;
Wu, Y ;
Robinson, MB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (48) :45741-45750