An elementary proof for the nine missing particles of the standard model

被引:7
作者
El Naschie, MS [1 ]
机构
[1] Univ Alexandria, Dept Phys, Alexandria, Egypt
[2] Cairo Univ, Dept Astrophys, Cairo, Egypt
[3] Mansura Univ, Dept Phys, Mansoura, Egypt
关键词
D O I
10.1016/j.chaos.2005.10.047
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Several authors have recently argued that a "complete" standard model should include nine more elementary particles besides the 60 already believed to be experimentally confirmed. The present short note gives an elementary and convincing proof for the correctness of this conjecture. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1136 / 1138
页数:3
相关论文
共 10 条
[1]   A guide to the mathematics of E-infinity Cantorian spacetime theory [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2005, 25 (05) :955-964
[2]   Elementary number theory in superstrings, loop quantum mechanics, twistors and E-infinity high energy physics [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2006, 27 (02) :297-330
[3]   A review of E infinity theory and the mass spectrum of high energy particle physics [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2004, 19 (01) :209-236
[4]   On a class of general theories for high energy particle physics [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2002, 14 (04) :649-668
[5]   The Concepts of E Infinity:: An elementary introduction to the Cantorian-fractal theory of quantum physics [J].
El Naschle, MS .
CHAOS SOLITONS & FRACTALS, 2004, 22 (02) :495-511
[6]  
He JH, 2005, INT J NONLIN SCI NUM, V6, P93
[7]  
He JH, 2005, INT J NONLIN SCI NUM, V6, P343
[8]   Different Higgs models and the number of Higgs particles [J].
Marek-Crnjac, L .
CHAOS SOLITONS & FRACTALS, 2006, 27 (03) :575-579
[9]   On the unification of all fundamental forces in a fundamentally fuzzy Cantorian ε(∞) manifold and high energy particle physics [J].
Marek-Crnjac, L .
CHAOS SOLITONS & FRACTALS, 2004, 20 (04) :669-682
[10]   Fundamentals of a new kind of mathematics based on the Golden Section [J].
Stakhov, A .
CHAOS SOLITONS & FRACTALS, 2006, 27 (05) :1124-1146