Fluorescent labeling of RAFT-generated poly(N-isopropylacrylamide) via a facile maleimide-thiol coupling reaction

被引:189
作者
Scales, Charles W.
Convertine, Anthony J.
McCormick, Charles L. [1 ]
机构
[1] Univ So Mississippi, Dept Polymer Sci, Hattiesburg, MS 39406 USA
[2] Univ So Mississippi, Dept Chem & Biochem, Hattiesburg, MS 39406 USA
关键词
D O I
10.1021/bm060192b
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We report a facile labeling technique in which the telechelic thiocarbonylthio functionality of well-defined poly( N-isopropylacrylamide) (PNIPAM) prepared by room temperature RAFT polymerization is first converted to the thiol and subsequently reacted with a maleimido-functional fluorescent dye, N-(1-pyrene) maleimide (PM). Nearly monodisperse PNIPAM (M-n) 39 500 g/mol, M-w/M-n = 1.07) was synthesized using a trithiocarbonate-based CTA, 2-dodecylsulfanylthiocarbonylsulfanyl-2-methyl propionic acid (DMP), and a conventional azo-initiator, namely, 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile) (V-70), as the primary source of radicals. The key to successful conjugation of PM to PNIPAM is the implementation of a two-step reduction process involving ( 1) the cleavage of the trithiocarbonate with a strong reducing agent, in this case, NaBH4, to form a mixture of polymeric thiols and disulfides and (2) the conjugation of PM to the pure polymeric thiol in the presence of tris(2-carboxyethyl) phosphine center dot HCl (TCEP). We show that TCEP efficiently eliminates the formation of polymeric disulfides and thus allows for the desired addition of the free polymeric thiol across the maleimide double bond. This concept is demonstrated using SEC-MALLS and UV-vis spectroscopy measurements.
引用
收藏
页码:1389 / 1392
页数:4
相关论文
共 48 条
[1]  
[Anonymous], CONTROLLED LIVING RA
[2]   Highly branched stimuli responsive poly [(N-isopropyl acrylamide)-co-(1,2-propandiol-3-methacrylate)]s with protein binding functionality [J].
Carter, S ;
Rimmer, S ;
Sturdy, A ;
Webb, M .
MACROMOLECULAR BIOSCIENCE, 2005, 5 (05) :373-378
[3]   Highly branched poly(N-isopropylacrylamide)s with imidazole end groups prepared by radical polymerization in the presence of a styryl monomer containing a dithioester group [J].
Carter, S ;
Hunt, B ;
Rimmer, S .
MACROMOLECULES, 2005, 38 (11) :4595-4603
[4]   Thiocarbonylthio compounds (S=C(Z)S-R) in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization). Effect of the activating group Z [J].
Chiefari, J ;
Mayadunne, RTA ;
Moad, CL ;
Moad, G ;
Rizzardo, E ;
Postma, A ;
Skidmore, MA ;
Thang, SH .
MACROMOLECULES, 2003, 36 (07) :2273-2283
[5]   A more versatile route to block copolymers and other polymers of complex architecture by living radical polymerization: The RAFT process [J].
Chong, YK ;
Le, TPT ;
Moad, G ;
Rizzardo, E ;
Thang, SH .
MACROMOLECULES, 1999, 32 (06) :2071-2074
[6]   Thiocarbonylthio compounds [S=C(Ph)S-R] in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization). Role of the free-radical leaving group (R) [J].
Chong, YK ;
Krstina, J ;
Le, TPT ;
Moad, G ;
Postma, A ;
Rizzardo, E ;
Thang, SH .
MACROMOLECULES, 2003, 36 (07) :2256-2272
[7]   Facile, controlled, room-temperature RAFT polymerization of N-isopropylacrylamide [J].
Convertine, AJ ;
Ayres, N ;
Scales, CW ;
Lowe, AB ;
McCormick, CL .
BIOMACROMOLECULES, 2004, 5 (04) :1177-1180
[8]   Molecular weight and functional end group control by RAFT polymerization of a bisubstituted acrylamide derivative [J].
D'Agosto, F ;
Hughes, R ;
Charreyre, MT ;
Pichot, C ;
Gilbert, RG .
MACROMOLECULES, 2003, 36 (03) :621-629
[9]   Controlled/"living" polymerization of sulfobetaine monomers directly in aqueous media via RAFT [J].
Donovan, MS ;
Sumerlin, BS ;
Lowe, AB ;
McCormick, CL .
MACROMOLECULES, 2002, 35 (23) :8663-8666
[10]   Sulfobetaine-containing diblock and triblock copolymers via reversible addition-fragmentation chain transfer polymerization in aqueous media [J].
Donovan, MS ;
Lowe, AB ;
Sanford, TA ;
McCormick, CL .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2003, 41 (09) :1262-1281