Optimal mitigation strategies with negative emission technologies and carbon sinks under uncertainty

被引:28
作者
Fuss, Sabine [1 ]
Reuter, Wolf Heinrich [1 ,2 ]
Szolgayova, Jana [1 ,3 ]
Obersteiner, Michael [1 ]
机构
[1] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria
[2] Vienna Univ Econ & Business, Dept Econ, A-1090 Vienna, Austria
[3] Comenius Univ, Dept Appl Math & Stat, Bratislava 84248, Slovakia
关键词
BIOMASS ENERGY; BIO-ENERGY; CAPTURE; SEQUESTRATION; STORAGE; MODEL;
D O I
10.1007/s10584-012-0676-1
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In recent years a body of literature has arisen on the topic of how to compose the optimal portfolio of mitigation options. The focus has been mainly on options involving shifts from high- to low- or even negative-carbon technologies. Natural sinks play an important role in any attempt to stabilize atmospheric CO2 and usually enter as a constant term in the overall carbon budget. In this paper, we introduce natural sinks to the carbon management problem and analyze the implications for negative emission technology deployment and the overall mitigation strategy. Amongst other sensitivity analyses, we also investigate the impact of uncertainty in the carbon sink, which we find to raise the importance of negative emissions in the mitigation portfolio significantly lowering the cost of the policy mix.
引用
收藏
页码:73 / 87
页数:15
相关论文
共 47 条
[11]   Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? [J].
Crutzen, Paul J. .
CLIMATIC CHANGE, 2006, 77 (3-4) :211-219
[12]  
Denman KL, 2007, AR4 CLIMATE CHANGE 2007: THE PHYSICAL SCIENCE BASIS, P499
[13]  
Dooley JJ, 2005, PEER REV PAPERS PLEN, V1
[14]   Climate-carbon cycle feedback analysis:: Results from the C4MIP model intercomparison [J].
Friedlingstein, P. ;
Cox, P. ;
Betts, R. ;
Bopp, L. ;
Von Bloh, W. ;
Brovkin, V. ;
Cadule, P. ;
Doney, S. ;
Eby, M. ;
Fung, I. ;
Bala, G. ;
John, J. ;
Jones, C. ;
Joos, F. ;
Kato, T. ;
Kawamiya, M. ;
Knorr, W. ;
Lindsay, K. ;
Matthews, H. D. ;
Raddatz, T. ;
Rayner, P. ;
Reick, C. ;
Roeckner, E. ;
Schnitzler, K. -G. ;
Schnur, R. ;
Strassmann, K. ;
Weaver, A. J. ;
Yoshikawa, C. ;
Zeng, N. .
JOURNAL OF CLIMATE, 2006, 19 (14) :3337-3353
[15]  
Fuss S, 2010, SMART SOLUTIONS CLIM, P133
[16]  
GEA, 2012, Global energy assessment: toward a sustainable future, DOI 10.1017/CBO9780511793677
[17]   Optimal Timing of Climate Change Policy: Interaction Between Carbon Taxes and Innovation Externalities [J].
Gerlagh, Reyer ;
Kverndokk, Snorre ;
Rosendahl, Knut Einar .
ENVIRONMENTAL & RESOURCE ECONOMICS, 2009, 43 (03) :369-390
[18]   Biomass energy with carbon capture and storage (BECCS or Bio-CCS) [J].
Gough, Clair ;
Upham, Paul .
GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2011, 1 (04) :324-334
[19]   Carbon Cycle Uncertainty Increases Climate Change Risks and Mitigation Challenges [J].
Higgins, Paul A. T. ;
Harte, John .
JOURNAL OF CLIMATE, 2012, 25 (21) :7660-7668
[20]   Potential of biomass energy out to 2100, for four IPCCSRES land-use scenarios [J].
Hoogwijk, M ;
Faaij, A ;
Eickhout, B ;
de Vries, B ;
Turkenburg, W .
BIOMASS & BIOENERGY, 2005, 29 (04) :225-257