Convergent relaxations of polynomial matrix inequalities and static output feedback

被引:148
作者
Henrion, D [1 ]
Lasserre, JB
机构
[1] CNRS, LAAS, F-31077 Toulouse, France
[2] Czech Tech Univ, Fac Elect Engn, Dept Control Engn, Prague 16627, Czech Republic
[3] Univ Toulouse 3, Inst Math Toulouse, F-31602 Toulouse, France
关键词
convex optimization; nonconvex optimization; polynomial matrix; static output feedback design;
D O I
10.1109/TAC.2005.863494
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Using a moment interpretation of recent results on sum-of-squares decompositions of nonnegative polynomial matrices, we propose a hierarchy of convex linear matrix inequality (LMI) relaxations to solve nonconvex polynomial matrix inequality (PMI) optimization problems, including bilinear matrix inequality (BMI) problems. This hierarchy of LMI relaxations generates a monotone sequence of lower bounds that converges to the global optimum. Results from the theory of moments are used to detect whether the global optimum is reached at a given LMI relaxation, and if so, to extract global minimizers that satisfy the PMI. The approach is successfully applied to PMIs arising from static output feedback design problems.
引用
收藏
页码:192 / 202
页数:11
相关论文
共 30 条
[1]  
Basu S., 2006, Algorithms in Real Algebraic Geometry, V10
[2]  
BOYD S, 1998, LINEAR MATRIX INEQUA
[3]  
Fujioka H., 1997, Transactions of the Society of Instrument and Control Engineers, V33, P616
[4]   Branch-and-cut algorithms for the bilinear matrix inequality eigenvalue problem [J].
Fukuda, M ;
Kojima, M .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2001, 19 (01) :79-105
[5]  
Goh KC, 1996, INT J ROBUST NONLIN, V6, P1079, DOI 10.1002/(SICI)1099-1239(199611)6:9/10<1079::AID-RNC270>3.0.CO
[6]  
2-#
[7]   Global optimization for the biaffine matrix inequality problem [J].
Goh, KC ;
Safonov, MG ;
Papavassilopoulos, GP .
JOURNAL OF GLOBAL OPTIMIZATION, 1995, 7 (04) :365-380
[8]   Solving nonconvex optimization problems [J].
Henrion, D ;
Lasserre, JB .
IEEE CONTROL SYSTEMS MAGAZINE, 2004, 24 (03) :72-83
[9]   Ellipsoidal approximation of the stability domain of a polynomial [J].
Henrion, D ;
Peaucelle, D ;
Arzelier, D ;
Sebek, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (12) :2255-2259
[10]   GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi [J].
Henrion, D ;
Lasserre, JB .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2003, 29 (02) :165-194