Pattern classification by memristive crossbar circuits using ex situ and in situ training

被引:504
作者
Alibart, Fabien [1 ]
Zamanidoost, Elham [1 ]
Strukov, Dmitri B. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
关键词
DEVICES; PLASTICITY; CROSSNETS; STORAGE;
D O I
10.1038/ncomms3072
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Memristors are memory resistors that promise the efficient implementation of synaptic weights in artificial neural networks. Whereas demonstrations of the synaptic operation of memristors already exist, the implementation of even simple networks is more challenging and has yet to be reported. Here we demonstrate pattern classification using a single-layer perceptron network implemented with a memrisitive crossbar circuit and trained using the perceptron learning rule by ex situ and in situ methods. In the first case, synaptic weights, which are realized as conductances of titanium dioxide memristors, are calculated on a precursor software-based network and then imported sequentially into the crossbar circuit. In the second case, training is implemented in situ, so the weights are adjusted in parallel. Both methods work satisfactorily despite significant variations in the switching behaviour of the memristors. These results give hope for the anticipated efficient implementation of artificial neuromorphic networks and pave the way for dense, high-performance information processing systems.
引用
收藏
页数:7
相关论文
共 48 条
[1]   High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm [J].
Alibart, Fabien ;
Gao, Ligang ;
Hoskins, Brian D. ;
Strukov, Dmitri B. .
NANOTECHNOLOGY, 2012, 23 (07)
[2]  
[Anonymous], 1962, Aerosp. Eng
[3]   Pavlov's Dog Associative Learning Demonstrated on Synaptic-Like Organic Transistors [J].
Bichler, O. ;
Zhao, W. S. ;
Alibart, F. ;
Pleutin, S. ;
Lenfant, S. ;
Vuillaume, D. ;
Gamrat, C. .
NEURAL COMPUTATION, 2013, 25 (02) :549-566
[4]   An electrically modifiable synapse array of resistive switching memory [J].
Choi, Hyejung ;
Jung, Heesoo ;
Lee, Joonmyoung ;
Yoon, Jaesik ;
Park, Jubong ;
Seong, Dong-Jun ;
Lee, Wootae ;
Hasan, Musarrat ;
Jung, Gun-Young ;
Hwang, Hyunsang .
NANOTECHNOLOGY, 2009, 20 (34)
[5]   Resistance switching memories are memristors [J].
Chua, Leon .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2011, 102 (04) :765-783
[6]   A single-transistor silicon synapse [J].
Diorio, C ;
Hasler, P ;
Minch, A ;
Mead, CA .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1996, 43 (11) :1972-1980
[7]  
Farabet Clement., 2011, Scaling up Machine Learning: Parallel and Distributed Approaches, P399
[8]  
Govoreanu B., 2012, IEEE INT EL DEV M, V31, P3631
[9]   A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre [J].
Green, Jonathan E. ;
Choi, Jang Wook ;
Boukai, Akram ;
Bunimovich, Yuri ;
Johnston-Halperin, Ezekiel ;
DeIonno, Erica ;
Luo, Yi ;
Sheriff, Bonnie A. ;
Xu, Ke ;
Shin, Young Shik ;
Tseng, Hsian-Rong ;
Stoddart, J. Fraser ;
Heath, James R. .
NATURE, 2007, 445 (7126) :414-417
[10]   Adaptive oxide electronics: A review [J].
Ha, Sieu D. ;
Ramanathan, Shriram .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (07)