Elastic constants of tetrahedral amorphous carbon films:: the effect of intrinsic stresses

被引:9
作者
Belov, AY
Jäger, HU
机构
[1] Res Ctr Rossendorf, Inst Ion Beam Phys & Mat Res, D-01314 Dresden, Germany
[2] Russian Acad Sci, Inst Crystallog, Moscow, Russia
关键词
molecular dynamics; tetrahedral amorphous carbon; intrinsic stress; elastic constants;
D O I
10.1016/S0257-8972(01)01625-5
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Atomic calculations, based on empirical potentials and the method of homogeneous deformation, are presented for the elastic properties of as-deposited amorphous carbon at 0 K. Several structural models of amorphous carbon generated by a realistic molecular-dynamics simulation of ion-beam deposition were studied. The models yield intrinsic compressive stresses of approximately 10 GPa. Here, we examine the dependence of the second-order elastic constants of amorphous carbon on the intrinsic stress. as well as on hydrostatic pressure. Different sets of elastic constants describing the behaviour of a solid under stress are considered. The non-Linear effects are shown to become appreciable at a pressure of 10 GPa, whereas the difference between the elastic constants in the equations of motion and the Lagrangian elastic constants is not large. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:128 / 132
页数:5
相关论文
共 17 条
[1]   SECOND-ORDER ELASTIC CONSTANTS OF A SOLID UNDER STRESS [J].
BARRON, THK ;
KLEIN, ML .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1965, 85 (545P) :523-&
[2]  
BELOV AY, 2001, MAT RES SOC S P, V648
[3]  
BRENNER DW, 1992, PHYS REV B, V46, P1948, DOI 10.1103/PhysRevB.46.1948.2
[4]   EMPIRICAL POTENTIAL FOR HYDROCARBONS FOR USE IN SIMULATING THE CHEMICAL VAPOR-DEPOSITION OF DIAMOND FILMS [J].
BRENNER, DW .
PHYSICAL REVIEW B, 1990, 42 (15) :9458-9471
[5]   Stress reduction and bond stability during thermal annealing of tetrahedral amorphous carbon [J].
Ferrari, AC ;
Kleinsorge, B ;
Morrison, NA ;
Hart, A ;
Stolojan, V ;
Robertson, J .
JOURNAL OF APPLIED PHYSICS, 1999, 85 (10) :7191-7197
[6]   Thick stress-free amorphous-tetrahedral carbon films with hardness near that of diamond [J].
Friedmann, TA ;
Sullivan, JP ;
Knapp, JA ;
Tallant, DR ;
Follstaedt, DM ;
Medlin, DL ;
Mirkarimi, PB .
APPLIED PHYSICS LETTERS, 1997, 71 (26) :3820-3822
[7]  
Jäger HU, 2000, J APPL PHYS, V88, P1129, DOI 10.1063/1.373787
[8]   ELASTIC PROPERTIES OF AMORPHOUS-CARBON NETWORKS [J].
KELIRES, PC .
PHYSICAL REVIEW LETTERS, 1994, 73 (18) :2460-2463
[9]   Intrinsic stress and local rigidity in tetrahedral amorphous carbon [J].
Kelires, PC .
PHYSICAL REVIEW B, 2000, 62 (23) :15686-15694
[10]   SUBPLANTATION MODEL FOR FILM GROWTH FROM HYPERTHERMAL SPECIES - APPLICATION TO DIAMOND [J].
LIFSHITZ, Y ;
KASI, SR ;
RABALAIS, JW .
PHYSICAL REVIEW LETTERS, 1989, 62 (11) :1290-1293