Real-Space Density Functional Theory on Graphical Processing Units: Computational Approach and Comparison to Gaussian Basis Set Methods

被引:51
作者
Andrade, Xavier [1 ]
Aspuru-Guzik, Alan [1 ]
机构
[1] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
关键词
ELECTRONIC-STRUCTURE CALCULATIONS; QUANTUM-CHEMISTRY CALCULATIONS; ABSORPTION-SPECTRA; HARTREE-FOCK; ENERGY; TIME; IMPLEMENTATION; EXCHANGE; DESIGN; APPROXIMATION;
D O I
10.1021/ct400520e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We discuss the application of graphical processing units (GPUs) to accelerate real-space density functional theory (DFT) calculations. To make our implementation efficient, we have developed a scheme to expose the data parallelism available in the DFT approach; this is applied to the different procedures required for a real-space DFT calculation. We present results for current-generation GPUs from AMD and Nvidia, which show that our scheme, implemented in the free code Octopus, can reach a sustained performance of up to 90 GFlops for a single GPU, representing a significant speed-up when compared to the CPU version of the code. Moreover, for some systems, our implementation can outperform a CPU Gaussian basis set code, showing that the real-space approach is a competitive alternative for DFT simulations on GPUs.
引用
收藏
页码:4360 / 4373
页数:14
相关论文
共 129 条
[41]   Coupled Cluster Theory on Graphics Processing Units I. The Coupled Cluster Doubles Method [J].
DePrince, A. Eugene, III ;
Hammond, Jeff R. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2011, 7 (05) :1287-1295
[42]  
Dursun H, 2009, LECT NOTES COMPUT SC, V5704, P642, DOI 10.1007/978-3-642-03869-3_61
[43]   Universal Dynamical Steps in the Exact Time-Dependent Exchange-Correlation Potential [J].
Elliott, P. ;
Fuks, J. I. ;
Rubio, A. ;
Maitra, N. T. .
PHYSICAL REVIEW LETTERS, 2012, 109 (26)
[44]   Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method [J].
Enkovaara, J. ;
Rostgaard, C. ;
Mortensen, J. J. ;
Chen, J. ;
Dulak, M. ;
Ferrighi, L. ;
Gavnholt, J. ;
Glinsvad, C. ;
Haikola, V. ;
Hansen, H. A. ;
Kristoffersen, H. H. ;
Kuisma, M. ;
Larsen, A. H. ;
Lehtovaara, L. ;
Ljungberg, M. ;
Lopez-Acevedo, O. ;
Moses, P. G. ;
Ojanen, J. ;
Olsen, T. ;
Petzold, V. ;
Romero, N. A. ;
Stausholm-Moller, J. ;
Strange, M. ;
Tritsaris, G. A. ;
Vanin, M. ;
Walter, M. ;
Hammer, B. ;
Hakkinen, H. ;
Madsen, G. K. H. ;
Nieminen, R. M. ;
Norskov, J. K. ;
Puska, M. ;
Rantala, T. T. ;
Schiotz, J. ;
Thygesen, K. S. ;
Jacobsen, K. W. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (25)
[45]  
Ester K., 2012, COMPUT SCI ENG, V14, P40
[46]  
Fattebert J-L., 2003, HDB NUMERICAL ANAL, V10, P571
[47]   Towards grid-based O(N) density-functional theory methods:: Optimized nonorthogonal orbitals and multigrid acceleration [J].
Fattebert, JL ;
Bernholc, J .
PHYSICAL REVIEW B, 2000, 62 (03) :1713-1722
[48]   The design and implementation of FFTW3 [J].
Frigo, M ;
Johnson, SG .
PROCEEDINGS OF THE IEEE, 2005, 93 (02) :216-231
[49]  
Galassi M., 2003, GNU SCIENTIFIC LIBRA
[50]  
Garcia-Risueno P., 2012, ARXIV 1211 2092 PHYS