Lithiation of silica through partial reduction

被引:62
作者
Ban, Chunmei [1 ]
Kappes, Branden B. [2 ,3 ]
Xu, Qiang [1 ]
Engtrakul, Chaiwat [1 ]
Ciobanu, Cristian V. [2 ,3 ]
Dillon, Anne C. [1 ]
Zhao, Yufeng [1 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
[2] Colorado Sch Mines, Dept Mech Engn, Golden, CO 80401 USA
[3] Colorado Sch Mines, Mat Sci Program, Golden, CO 80401 USA
基金
美国国家科学基金会;
关键词
LITHIUM-ION BATTERIES; NANOSTRUCTURED SILICON; ANODE MATERIAL; SIO ANODES; OXIDE; INSERTION; ELECTRODE; CARBON; STATE; EDGE;
D O I
10.1063/1.4729743
中图分类号
O59 [应用物理学];
学科分类号
摘要
We demonstrate the reversible lithiation of SiO2 up to 2/3 Li per Si, and propose a mechanism for it based on molecular dynamics and density functional theory simulations. Our calculations show that neither interstitial Li (no reduction), nor the formation of Li2O clusters and Si-Si bonds (full reduction) are energetically favorable. Rather, two Li effectively break a Si-O bond and become stabilized by oxygen, thus partially reducing the SiO2 anode: this leads to increased anode capacity when the reduction occurs at the Si/SiO2 interface. The resulting LixSiO2 (x < 2/3) compounds have band-gaps in the range of 2.0-3.4 eV. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729743]
引用
收藏
页数:4
相关论文
共 31 条
[21]   Anode properties of amorphous 50SiO•50SnO powders synthesized by mechanical milling [J].
Morimoto, H ;
Tatsumisago, M ;
Minami, T .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (02) :A16-A18
[22]   A reactive force field for lithium-aluminum silicates with applications to eucryptite phases [J].
Narayanan, Badri ;
van Duin, Adri C. T. ;
Kappes, Branden B. ;
Reimanis, Ivar E. ;
Ciobanu, Cristian V. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2012, 20 (01)
[23]   FAST PARALLEL ALGORITHMS FOR SHORT-RANGE MOLECULAR-DYNAMICS [J].
PLIMPTON, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 117 (01) :1-19
[24]   CuFe2O4/SnO2 nanocomposites as anodes for Li-ion batteries [J].
Selvan, R. Kalai ;
Kalaiselvi, N. ;
Augustin, C. O. ;
Doh, C. H. ;
Sanjeeviraja, C. .
JOURNAL OF POWER SOURCES, 2006, 157 (01) :522-527
[25]   Nanostructured silicon for high capacity lithium battery anodes [J].
Szczech, Jeannine R. ;
Jin, Song .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (01) :56-72
[26]   Optical properties and London dispersion interaction of amorphous and crystalline SiO2 determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry -: art. no. 205117 [J].
Tan, GL ;
Lemon, MF ;
Jones, DJ ;
French, RH .
PHYSICAL REVIEW B, 2005, 72 (20)
[27]   ReaxFFSiO reactive force field for silicon and silicon oxide systems [J].
van Duin, ACT ;
Strachan, A ;
Stewman, S ;
Zhang, QS ;
Xu, X ;
Goddard, WA .
JOURNAL OF PHYSICAL CHEMISTRY A, 2003, 107 (19) :3803-3811
[28]   Crystalline Li3Po4/Li4SiO4 solid solutions as an electrolyte for film batteries using sputtered cathode layers [J].
Whitacre, JF ;
West, WC .
SOLID STATE IONICS, 2004, 175 (1-4) :251-255
[29]   Kinetics of Electrochemical Insertion and Extraction of Lithium Ion at SiO [J].
Yamada, Yuki ;
Iriyama, Yasutoshi ;
Abe, Takeshi ;
Ogumi, Zempachi .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (01) :A26-A30
[30]   SiOx-based anodes for secondary lithium batteries [J].
Yang, J ;
Takeda, Y ;
Imanishi, N ;
Capiglia, C ;
Xie, JY ;
Yamamoto, O .
SOLID STATE IONICS, 2002, 152 :125-129