General synthesis and phase control of metal molybdate hydrates MMoO4•nH2O (M = Co, Ni, Mn, n=0, 3/4, 1) nano/microcrystals by a hydrothermal approach:: Magnetic, photocatalytic, and electrochemical properties

被引:180
作者
Ding, Yi [1 ]
Wan, Yong [1 ]
Min, Yu-Lin [1 ]
Zhang, Wei [1 ]
Yu, Shu-Hong [1 ]
机构
[1] Univ Sci & Technol China, Div Nanomat & Chem, Hefei Natl Labo Phys Sci Microscale, Struct Res Lab CAS,Dept Chem, Hefei 230026, Peoples R China
关键词
D O I
10.1021/ic8007975
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Different phases and morphologies of molybdate hydrates MMoO4 center dot nH(2)O (M = Co, Ni, Mn, n = 0, 3/4, 1) nano/microcrystals, which include NiMoO4 center dot H2O microflowers, MnMoO4 center dot H2O microparallelogram plates, and CoMoO4 center dot 3/4H(2)O microrods, can be selectively synthesized by a hydrothermal process. The pH and reaction temperature have a crucial influence on the synthesis and shape evolution of the final products. Uniform CoMoO4 center dot 3/4H(2)O and NiMoO4 center dot H2O nanorod bundles can be produced by a hydrothermal process with the assistance of PEG-400. The calcination Of CoMoO4 center dot 3/4H(2)O and NiMoO4 center dot H2O at 500 and 550 degrees C, respectively, allows the formation of monoclinic beta-CoMoO4 and alpha-NiMoO4. The antiferromagnetic property of MnMoO4 center dot H2O, MnMoO4, and CoMoO4 center dot 3/4H(2)O has been studied for the first time. The photocatalytic activity of metal molybdate particles with different morphologies has been tested by degradation of acid fuchsine under visible light. Electrochemical performances of MMoO4 (M = Ni, Co) nanorod bundles and MnMoO4 microrods have been evaluated.
引用
收藏
页码:7813 / 7823
页数:11
相关论文
共 47 条
[1]   Crystal Structure of the Transition-Metal Molybdates. I. Paramagnetic Alpha-MnMoO(4) [J].
Abrahams, S. C. ;
Reddy, J. M. .
JOURNAL OF CHEMICAL PHYSICS, 1965, 43 (07) :2533-2543
[2]  
Adeira L. M., 2004, CATAL REV SCI ENG, V46, P53
[3]  
Aranda R. M. M., 1995, APPL CATAL A-GEN, V127, P201
[4]   In situ study of the formation of crystalline bismuth molybdate materials under hydrothermal conditions [J].
Beale, AM ;
Sankar, G .
CHEMISTRY OF MATERIALS, 2003, 15 (01) :146-153
[5]   Conversion of colloidal ZnO-WO3 heteroaggregates into strongly blue luminescing ZnWO4 xerogels and films [J].
Bonanni, M ;
Spanhel, L ;
Lerch, M ;
Fuglein, E ;
Muller, G ;
Jermann, F .
CHEMISTRY OF MATERIALS, 1998, 10 (01) :304-310
[6]   Effect of phase composition of the oxidic precursor on the HDS activity of the sulfided molybdates of Fe(II), Co(II), and Ni(II) [J].
Brito, JL ;
Barbosa, AL .
JOURNAL OF CATALYSIS, 1997, 171 (02) :467-475
[7]   ASPECTS OF SELECTIVE OXIDATION AND AMMOXIDATION MECHANISMS OVER BISMUTH MOLYBDATE CATALYSTS .2. ALLYL ALCOHOL AS A PROBE FOR THE ALLYLIC INTERMEDIATE [J].
BURRINGTON, JD ;
KARTISEK, CT ;
GRASSELLI, RK .
JOURNAL OF CATALYSIS, 1980, 63 (01) :235-254
[8]   ASPECTS OF SELECTIVE OXIDATION AND AMMOXIDATION MECHANISMS OVER BISMUTH MOLYBDATE CATALYSTS [J].
BURRINGTON, JD ;
GRASSELLI, RK .
JOURNAL OF CATALYSIS, 1979, 59 (01) :79-99
[9]   A simple aqueous mineralization process to synthesize tetragonal molybdate microcrystallites [J].
Chen, D ;
Tang, KB ;
Li, FQ ;
Zheng, HG .
CRYSTAL GROWTH & DESIGN, 2006, 6 (01) :247-252
[10]   Morphology control of MnWO4 nanocrystals by a solvothermal route [J].
Chen, SJ ;
Chen, XT ;
Xue, ZL ;
Zhou, JH ;
Li, J ;
Hong, JM ;
You, XZ .
JOURNAL OF MATERIALS CHEMISTRY, 2003, 13 (05) :1132-1135