Noncommutative geometry and the regularization problem of 4D quantum field theory

被引:69
作者
Grosse, H
Strohmaier, A
机构
[1] Univ Vienna, Inst Theoret Phys, A-1090 Vienna, Austria
[2] Graz Tech Univ, Inst Theoret Phys, A-8010 Graz, Austria
关键词
regularization; noncommutative geometry; geometric quantization; CP2;
D O I
10.1023/A:1007518622795
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a noncommutative version of the complex projective space bb CP2 and show that scalar QFT on this space is free of UV divergencies. The tools necessary to investigate quantum fields on this fuzzy bb CP2 are developed and several possibilities to introduce spinors and Dirac operators are discussed.
引用
收藏
页码:163 / 179
页数:17
相关论文
共 22 条
[1]  
Berline N, 1992, HEAT KERNELS DIRAC O
[2]   TOEPLITZ QUANTIZATION OF KAHLER-MANIFOLDS AND GL(N), N-]INFINITY LIMITS [J].
BORDEMANN, M ;
MEINRENKEN, E ;
SCHLICHENMAIER, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (02) :281-296
[3]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[4]  
DUBOISVIOLETTE M, 9578 LPTHE ORS
[5]  
FOLLAND GB, 1995, COURSE ABSTRACT HARO
[6]  
FROHLICH J, ETHTH9645
[7]   The fuzzy supersphere [J].
Grosse, H ;
Reiter, G .
JOURNAL OF GEOMETRY AND PHYSICS, 1998, 28 (3-4) :349-383
[8]   Topologically nontrivial field configurations in noncommutative geometry [J].
Grosse, H ;
Klimcik, C ;
Presnajder, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 178 (02) :507-526
[9]   A noncommutative regularization of the Schwinger model [J].
Grosse, H ;
Presnajder, P .
LETTERS IN MATHEMATICAL PHYSICS, 1998, 46 (01) :61-69
[10]   Finite quantum field theory in noncommutative geometry [J].
Grosse, H ;
Klimcik, C ;
Presnajder, P .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1996, 35 (02) :231-244