Finite quantum field theory in noncommutative geometry

被引:170
作者
Grosse, H
Klimcik, C
Presnajder, P
机构
[1] CERN,DIV THEORY,CH-1211 GENEVA 23,SWITZERLAND
[2] COMENIUS UNIV BRATISLAVA,DEPT THEORET PHYS,BRATISLAVA 84215,SLOVAKIA
关键词
D O I
10.1007/BF02083810
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe a self-interacting scalar field on a truncated sphere and perform the quantization using the functional (path) integral approach. The theory possesses full symmetry with respect to the isometries of the sphere. We explicitly show that the model is finite and that UV regularization automatically takes place.
引用
收藏
页码:231 / 244
页数:14
相关论文
共 16 条
[1]  
[Anonymous], 1965, SPECIAL FUNCTIONS TH
[2]  
CHAMSEDDINE AH, 1992, ETHTH199218 ZUR PREP
[3]  
CONNES A, 1990, GEOMETRIE COMMUTATIV
[4]  
CONNES A, 1986, PUBL MATH IHES, V62, P257
[5]   HIGGS FIELDS AS YANG-MILLS FIELDS AND DISCRETE SYMMETRIES [J].
COQUEREAUX, R ;
ESPOSITOFARESE, G ;
VAILLANT, G .
NUCLEAR PHYSICS B, 1991, 353 (03) :689-706
[6]   NONCOMMUTATIVE DIFFERENTIAL GEOMETRY OF MATRIX ALGEBRAS [J].
DUBOISVIOLETTE, M ;
KERNER, R ;
MADORE, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (02) :316-321
[7]  
DUBOISVIOLETTE M, 1988, CR ACAD SCI I-MATH, V307, P403
[8]   A NONCOMMUTATIVE VERSION OF THE SCHWINGER MODEL [J].
GROSSE, H ;
MADORE, J .
PHYSICS LETTERS B, 1992, 283 (3-4) :218-222
[9]   THE CONSTRUCTION OF NONCOMMUTATIVE MANIFOLDS USING COHERENT STATES [J].
GROSSE, H ;
PRESNAJDER, P .
LETTERS IN MATHEMATICAL PHYSICS, 1993, 28 (03) :239-250
[10]  
GROSSE H, IN PRESS FINITE GAUG