Nonorthogonal wavelet packets with r scaling functions

被引:4
作者
Feng, ZG [1 ]
Chen, G
机构
[1] China Univ Min & Technol, Inst Rock Mech & Fractals, Beijing 100083, Peoples R China
[2] Zhenjiang Teachers Coll, Dept Math, Jiangsu 212003, Peoples R China
[3] Chinese Univ Hong Kong, Inst Math Sci, Hong Kong, Hong Kong, Peoples R China
[4] Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R China
关键词
D O I
10.1023/A:1012046206504
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we discuss the multiresolution analysis generated by finite scaling functions phi(l), phi(2),.., phi(r) in L-2 (R). We also consider the direct wavelet decomposition and direct wavelet packet decomposition in L-2(R). Besides, we obtain some results about (dual\,) nonorthogonal wavelet packet as well as the stability of the basis generating the packet. At last. we give an example of nonorthogonal wavelet packets of multiplicity r by using fractal interpolation functions.
引用
收藏
页码:317 / 330
页数:14
相关论文
共 13 条
[1]   FRACTAL FUNCTIONS AND INTERPOLATION [J].
BARNSLEY, MF .
CONSTRUCTIVE APPROXIMATION, 1986, 2 (04) :303-329
[2]  
Chui C.K., 1992, An introduction to wavelets, V1, DOI DOI 10.1109/99.388960
[3]   A GENERAL FRAMEWORK OF COMPACTLY SUPPORTED SPLINES AND WAVELETS [J].
CHUI, CK ;
WANG, JZ .
JOURNAL OF APPROXIMATION THEORY, 1992, 71 (03) :263-304
[4]   NONORTHOGONAL WAVELET PACKETS [J].
CHUI, CK ;
LI, C .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (03) :712-738
[5]   BIORTHOGONAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
COHEN, A ;
DAUBECHIES, I ;
FEAUVEAU, JC .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (05) :485-560
[6]  
Daubechies I., 1993, Ten Lectures of Wavelets, V28, P350
[7]   Construction of orthogonal wavelets using fractal interpolation functions [J].
Donovan, GC ;
Geronimo, JS ;
Hardin, DP ;
Massopust, PR .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (04) :1158-1192
[8]   FRACTAL FUNCTIONS AND WAVELET EXPANSIONS BASED ON SEVERAL SCALING FUNCTIONS [J].
GERONIMO, JS ;
HARDIN, DP ;
MASSOPUST, PR .
JOURNAL OF APPROXIMATION THEORY, 1994, 78 (03) :373-401
[9]   WAVELETS IN WANDERING SUBSPACES [J].
GOODMAN, TNT ;
LEE, SL ;
TANG, WS .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 338 (02) :639-654
[10]   WAVELETS OF MULTIPLICITY-R [J].
GOODMAN, TNT ;
LEE, SL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 342 (01) :307-324