Construction of orthogonal wavelets using fractal interpolation functions

被引:193
作者
Donovan, GC
Geronimo, JS
Hardin, DP
Massopust, PR
机构
[1] VANDERBILT UNIV,DEPT MATH,NASHVILLE,TN 37240
[2] SAM HOUSTON STATE UNIV,DEPT MATH,HUNTSVILLE,TX 77341
关键词
wavelets; fractal interpolation functions; linear phase;
D O I
10.1137/S0036141093256526
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fractal interpolation functions are used to construct a compactly supported continuous, orthogonal wavelet basis spanning L(2) (lR). The wavelets share many of the properties normally associated with spline wavelets, in particular, they have linear phase.
引用
收藏
页码:1158 / 1192
页数:35
相关论文
共 22 条
[1]  
AUSCHER P, 1992, WAVELETS THEIR APPL, P439
[2]   FRACTAL FUNCTIONS AND INTERPOLATION [J].
BARNSLEY, MF .
CONSTRUCTIVE APPROXIMATION, 1986, 2 (04) :303-329
[3]   HOLDER EXPONENTS AND BOX DIMENSION FOR SELF-AFFINE FRACTAL FUNCTIONS [J].
BEDFORD, T .
CONSTRUCTIVE APPROXIMATION, 1989, 5 (01) :33-48
[4]  
Chui C.K., 1992, An introduction to wavelets, V1, DOI DOI 10.1109/99.388960
[5]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[6]   THE STRUCTURE OF FINITELY GENERATED SHIFT-INVARIANT SPACES IN L(2)(R(D)) [J].
DEBOOR, C ;
DEVORE, RA ;
RON, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 119 (01) :37-78
[7]  
DONOVAN G, 1996, IN PRESS SIAM J MATH, V27
[8]   FRACTAL INTERPOLATION SURFACES AND A RELATED 2-D MULTIRESOLUTION ANALYSIS [J].
GERONIMO, JS ;
HARDIN, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 176 (02) :561-586
[9]   FRACTAL FUNCTIONS AND WAVELET EXPANSIONS BASED ON SEVERAL SCALING FUNCTIONS [J].
GERONIMO, JS ;
HARDIN, DP ;
MASSOPUST, PR .
JOURNAL OF APPROXIMATION THEORY, 1994, 78 (03) :373-401
[10]  
GERONIMO JS, 1992, LECT NOTES PURE APPL, V157, P187