The extracytoplasmic function sigma factors: role in bacterial pathogenesis

被引:78
作者
Bashyam, Murali D. [1 ,2 ]
Hasnain, Seyed E. [2 ]
机构
[1] Stanford Univ, Sch Med, Dept Pathol, Palo Alto, CA 94306 USA
[2] Ctr DNA Fingerprinting & Diagnost CDFD, Hyderabad 500076, Andhra Pradesh, India
关键词
ECF; Sigma factors; Pathogenesis; Stress response; Extra cytoplasmic;
D O I
10.1016/j.meegid.2004.04.003
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Bacteria utilize a distinct subfamily of sigma factors to regulate extra cytoplasmic function (thus termed as ECF subfamily). Eubacteria appear to have evolved to incorporate extensive genetic diversity into their repertoire of ECF sigma factors (some species have more than 60 ECF sigma factors), while maintaining three major themes common to all members including: (1) they regulate and respond to extracytoplasmic functions; (2) they are themselves regulated by anti-sigma and/or anti-anti-sigma factors; and (3) most of them control a relatively small regulon. The cell wall is the first bacterial structure that comes in contact with the host during infection by pathogenic bacteria. The cell wall components are often associated with functions related to host cell invasion. It is therefore, likely that the ECF sigma factors regulate the bacterial response to host insult. Moreover, in some cases, virulence factors have been shown to be regulated directly by the ECF sigma factors. Unfortunately, this facet of the ECF sigma factors has not been an important area of study by researchers. The present review attempts to highlight the important role played by ECF sigma factors in bacterial pathogenesis and highlights several areas of future study involving the genetics of ECF sigma factors vis-a-vis bacterial pathogenesis. (C) 2004 Elsevier B. V. All rights reserved.
引用
收藏
页码:301 / 308
页数:8
相关论文
共 62 条
[1]   The Escherichia coli σE-dependent extracytoplasmic stress response is controlled by the regulated proteolysis of an anti-σ factor [J].
Ades, SE ;
Connolly, LE ;
Alba, BM ;
Gross, CA .
GENES & DEVELOPMENT, 1999, 13 (18) :2449-2461
[2]   DegS and YaeL participate sequentially in the cleavage of RseA to activate the σE-dependent extracytoplasmic stress response [J].
Alba, BM ;
Leeds, JA ;
Onufryk, C ;
Lu, CZ ;
Gross, CA .
GENES & DEVELOPMENT, 2002, 16 (16) :2156-2168
[3]   The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death [J].
Alfano, JR ;
Collmer, A .
JOURNAL OF BACTERIOLOGY, 1997, 179 (18) :5655-5662
[4]   A study of the mycobacterial transcriptional apparatus: Identification of novel features in promoter elements [J].
Bashyam, MD ;
Kaushal, D ;
Dasgupta, SK ;
Tyagi, AK .
JOURNAL OF BACTERIOLOGY, 1996, 178 (16) :4847-4853
[5]   Siderophore-mediated cell signalling in Pseudomonas aeruginosa:: divergent pathways regulate virulence factor production and siderophore receptor synthesis [J].
Beare, PA ;
For, RJ ;
Martin, LW ;
Lamont, IL .
MOLECULAR MICROBIOLOGY, 2003, 47 (01) :195-207
[6]   Two distinct loci affecting conversion to mucoidy in Pseudomonas aeruginosa in cystic fibrosis encode homologs of the serine protease HtrA [J].
Boucher, JC ;
MartinezSalazar, J ;
Schurr, MJ ;
Mudd, MH ;
Yu, H ;
Deretic, V .
JOURNAL OF BACTERIOLOGY, 1996, 178 (02) :511-523
[7]   LATERAL DIFFUSION OF PROTEINS IN THE PERIPLASM OF ESCHERICHIA-COLI [J].
BRASS, JM ;
HIGGINS, CF ;
FOLEY, M ;
RUGMAN, PA ;
BIRMINGHAM, J ;
GARLAND, PB .
JOURNAL OF BACTERIOLOGY, 1986, 165 (03) :787-795
[8]   Temperature regulation of protease in Pseudomonas fluorescens LS107d2 by an ECF sigma factor and a transmembrane activator [J].
Burger, M ;
Woods, RG ;
McCarthy, C ;
Beacham, IR .
MICROBIOLOGY-SGM, 2000, 146 :3149-3155
[9]   Crystal structure of Escherichia coli σE with the cytoplasmic domain of its anti-σ RseA [J].
Campbell, EA ;
Tupy, JL ;
Gruber, TM ;
Wang, S ;
Sharp, MM ;
Gross, CA ;
Darst, SA .
MOLECULAR CELL, 2003, 11 (04) :1067-1078
[10]   Regulation of the Bacillus subtilis bcrC bacitracin resistance gene by two extracytoplasmic function σ factors [J].
Cao, M ;
Helmann, JD .
JOURNAL OF BACTERIOLOGY, 2002, 184 (22) :6123-6129