Crystal structure of Escherichia coli σE with the cytoplasmic domain of its anti-σ RseA

被引:197
作者
Campbell, EA
Tupy, JL
Gruber, TM
Wang, S
Sharp, MM
Gross, CA
Darst, SA
机构
[1] Rockefeller Univ, Lab Mol Biophys, New York, NY 10021 USA
[2] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
[3] Univ Calif San Francisco, Dept Microbiol & Immunol, San Francisco, CA 94143 USA
[4] Univ Calif San Francisco, Dept Stomatol, San Francisco, CA 94143 USA
关键词
D O I
10.1016/S1097-2765(03)00148-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The sigma factors are the key regulators of bacterial transcription. ECF (extracytoplasmic function) sigma's are the largest and most divergent group of sigma(70) family members. ECF or's are normally sequestered in an inactive complex by their specific anti-sigma factor, which often spans the inner membrane. Here, we determined the 2 Angstrom resolution crystal structure of the Escherichia coli ECF sigma factor sigma(E) in an inhibitory complex with the cytoplasmic domain of its anti-sigma, RseA. Despite extensive sequence variability, the two major domains of sigma(E) are virtually identical in structure to the corresponding domains of other sigma(70) family members. In combination with a model of the sigma(E) holoenzyme and biochemical data, the structure reveals that RseA functions by sterically occluding the two primary binding determinants on sigma(E) for core RNA polymerase.
引用
收藏
页码:1067 / 1078
页数:12
相关论文
共 70 条
[1]   Cross-validated maximum likelihood enhances crystallographic simulated annealing refinement [J].
Adams, PD ;
Pannu, NS ;
Read, RJ ;
Brunger, AT .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (10) :5018-5023
[2]   The Escherichia coli σE-dependent extracytoplasmic stress response is controlled by the regulated proteolysis of an anti-σ factor [J].
Ades, SE ;
Connolly, LE ;
Alba, BM ;
Gross, CA .
GENES & DEVELOPMENT, 1999, 13 (18) :2449-2461
[3]   DegS and YaeL participate sequentially in the cleavage of RseA to activate the σE-dependent extracytoplasmic stress response [J].
Alba, BM ;
Leeds, JA ;
Onufryk, C ;
Lu, CZ ;
Gross, CA .
GENES & DEVELOPMENT, 2002, 16 (16) :2156-2168
[4]   degS (hhoB) is an essential Escherichia coli gene whose indispensable function is to provide σE activity [J].
Alba, BM ;
Zhong, HJ ;
Pelayo, JC ;
Gross, CA .
MOLECULAR MICROBIOLOGY, 2001, 40 (06) :1323-1333
[5]   Evidence that rseC, a gene in the rpoE cluster, has a role in thiamine synthesis in Salmonella typhimurium [J].
Beck, BJ ;
Connolly, LE ;
DelasPenas, A ;
Downs, DM .
JOURNAL OF BACTERIOLOGY, 1997, 179 (20) :6504-6508
[6]   THE ROLE OF ANTI-SIGMA FACTORS IN GENE-REGULATION [J].
BROWN, KL ;
HUGHES, KT .
MOLECULAR MICROBIOLOGY, 1995, 16 (03) :397-404
[7]   Regulated intramembrane proteolysis: A control mechanism conserved from bacteria to humans [J].
Brown, MS ;
Ye, J ;
Rawson, RB ;
Goldstein, JL .
CELL, 2000, 100 (04) :391-398
[8]   FACTOR STIMULATING TRANSCRIPTION BY RNA POLYMERASE [J].
BURGESS, RR ;
TRAVERS, AA ;
DUNN, JJ ;
BAUTZ, EKF .
NATURE, 1969, 221 (5175) :43-&
[9]   Structure of the bacterial RNA polymerase promoter specificity σ subunit [J].
Campbell, EA ;
Muzzin, O ;
Chlenov, M ;
Sun, JL ;
Olson, CA ;
Weinman, O ;
Trester-Zedlitz, ML ;
Darst, SA .
MOLECULAR CELL, 2002, 9 (03) :527-539
[10]   The anti-σ factor SpoIIAB forms a 2:1 complex with σF, contacting multiple conserved regions of the σ factor [J].
Campbell, EA ;
Darst, SA .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 300 (01) :17-28